
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

 STAFFSIM,  AN INTERACTIVE SIMULATION FOR
RAPID, REAL TIME COURSE OF ACTION ANALYSIS BY

U.S. ARMY BRIGADE STAFFS

by

William E. Bohman

June 1999

Thesis Advisor:                                   Arnold H. Buss
Thesis Co-Advisor:      Bard Mansager



i

 REPORT DOCUMENTATION PAGE             Form Approved
         OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1.  AGENCY USE ONLY (Leave blank) 2.   REPORT DATE
June 1999

3.  REPORT TYPE AND DATES COVERED
Master’s Thesis

4.  TITLE AND SUBTITLE
STAFFSIM,  AN INTERACTIVE SIMULATION FOR RAPID, REAL TIME
COURSE OF ACTION ANALYSIS BY U.S. ARMY BRIGADE STAFFS

5.  FUNDING NUMBERS

6.   AUTHOR(S)
William E. Bohman

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA  93943-5000

8.  PERFORMING  ORGANIZATION
REPORT NUMBER

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
      AGENCY REPORT NUMBER

11.  SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.
12a.  DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13.  ABSTRACT (maximum 200 words)
      The U.S. Army has fielded a wide range of simulations for tactical units. The purpose of these
simulations range from training individual skills to collective training for corps staffs. Currently fielded
simulations are not designed for operational use. Most are operated by contract civilian personnel and
require fixed base facilities. Furthermore, many of these simulations require extensive lead-time to initiate
useable scenarios. When the army rolls to the field, its simulations are left behind.
      The Army’s staff planning process places huge cognitive on demands unit staffs, often resulting in sub-
optimal decision making. Simulations can provide a useful tool to help staffs visualize and understand
complex time-space relationships and unit interactions. Eliminating the need for these factors to be
visualized in the mind’s eye allows staffs to focus their cognitive abilities on synchronizing mission plans.
      This thesis develops a prototype simulation for operational use by brigade staffs. The simulations
purpose is course of action analysis as described in the war gaming step of the staff planning process. To be
used operationally, the simulation must be easy to use, provide rapid scenario development, enable fast
course of action analysis and run on a personal computer. To meet these requirements the simulation
presented in this thesis is built using reusable software components and loosely coupled program modules.

14.  SUBJECT TERMS
Software Components, Staff Planning Process, Simulation, Loosely Coupled Software Components 15.  NUMBER OF PAGES

16.  PRICE CODE

17.  SECURITY
CLASSIFICATION OF REPORT
Unclassified

18.  SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19.  SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20.  LIMITATION OF ABSTRACT

UL

   NSN 7540-01-280-5500                                                                                                               Standard Form 298 (Rev. 2-89)                                                                                                                                   
          Prescribed by ANSI Std. 239-18



ii



iii

Approved for public release; distribution is unlimited

STAFFSIM,  AN INTERACTIVE SIMULATION FOR RAPID, REAL TIME COURSE OF
ACTION ANALYSIS BY U.S. ARMY BRIGADE STAFFS

William E. Bohman
Major, United States Army

B.S., University of Cincinnati, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
June 1999

Author:

William E. Bohman

Approved by:

Michael Zyda, Chairman
Modeling Virtual Environments and Simulation Academic Group

Michael Zyda, Academic Associate
Modeling Virtual Environments and Simulation Academic Group

Bard Mansager, Thesis Co-Advisor

Arnold H. Buss, Thesis Advisor



iv



v

ABSTRACT

The U.S. Army has fielded a wide range of simulations for tactical units. The

purpose of these simulations range from training individual skills to collective training

for corps staffs. Currently fielded simulations are not designed for operational use. Most

are operated by contract civilian personnel and require fixed base facilities. Furthermore,

many of these simulations require extensive lead-time to initiate useable scenarios. When

the army rolls to the field, its simulations are left behind.

 The Army’s staff planning process places huge cognitive demands on unit staffs,

often resulting in sub-optimal decision making. Simulations can provide a useful tool to

help staffs visualize and understand complex time-space relationships and unit

interactions. Eliminating the need for these factors to be visualized in the mind’s eye

allows staffs to focus their cognitive abilities on synchronizing mission plans.

This thesis develops a prototype simulation for operational use by brigade staffs.

The simulations purpose is course of action analysis as described in the war gaming step

of the staff planning process. To be used operationally, the simulation must be easy to

use, provide rapid scenario development, enable fast course of action analysis and run on

a personal computer. To meet these requirements the simulation presented in this thesis is

built using reusable software components and loosely coupled program modules.



vi



vii

TABLE OF CONTENTS
I. INTRODUCTION ...............................................................................................................................1

A.  MOTIVATION....................................................................................................................................1
B.  BACKGROUND ..................................................................................................................................3
C.  FIELDED SIMULATIONS .....................................................................................................................5

1. Janus...........................................................................................................................................6
2. Brigade/Battalion Battle Simulation BBS.....................................................................................8
3. Corp Battle Simulation CBS........................................................................................................9

D.  COMBAT TRAINING CENTERS..........................................................................................................10
E.  SUMMARY ......................................................................................................................................11
F.  SUMMARY OF CHAPTERS.................................................................................................................12

II.  THE  MILITARY DECISION  MAKING  PROCESS (MDMP) ..................................................15

A.  PURPOSE OF THE MDMP ................................................................................................................15
B.  METHODOLOGY..............................................................................................................................15

1. Mission Analysis.......................................................................................................................16
2. Course of Action Development..................................................................................................16
3. Course of Action Analysis .........................................................................................................17

C.  COURSE OF ACTION ANALYSIS IN PRACTICE ...................................................................................19
D.  POTENTIAL ROLE OF SIMULATION IN THE MDMP ...........................................................................21

III.  STAFF  SIMULATION  (STAFFSIM)  ........................................................................................23

A.  INTRODUCTION ..............................................................................................................................23
B.  SOFTWARE COMPONENTS ...............................................................................................................24
C.  STAFFSIM COMPONENTS.................................................................................................................26

1.  The Components ......................................................................................................................26
2.  Component Communication .....................................................................................................30

D. SUMMARY.......................................................................................................................................33

IV.  BATTLE  SIMULATION  (BATTLESIM)..................................................................................  35

A.  INTRODUCTION ..............................................................................................................................35
B.  BUILDING  BLOCK  COMPONENT  MODELS .......................................................................................37

1.  Mover  and  BasicMover ..........................................................................................................37
2.  Sensor  and  BasicSensor..........................................................................................................38
3.  Weapon  and  BasicWeapon ....................................................................................................43
4.  FireControl ..............................................................................................................................44

C.  COMPONENT  CONTAINERS .............................................................................................................47
1.  Vehicle ....................................................................................................................................47
2.  Unit ........................................................................................................................................49

D.  COMPONENT  INTERACTIONS...........................................................................................................50
1.  Introduction .............................................................................................................................50
2.  Event  Handling .......................................................................................................................51

a.  Listeners .............................................................................................................................51
b.  Event  Classes.....................................................................................................................52
c.  Event  Scheduling................................................................................................................52

E.  SUMMARY ......................................................................................................................................54



viii

V.  STAFFSIM  IMPLEMENTATION ................................................................................................55

A.  INTRODUCTION ..............................................................................................................................55
B.  SCENARIO DEVELOPMENT...............................................................................................................55

1.  Order of Battle .........................................................................................................................56
a.  Opposing Orders of Battle...................................................................................................56
b.  Order of Battle Input to STAFFSIM.....................................................................................58

2.  Courses of Action.....................................................................................................................58
a.  OPFOR Course of Action ....................................................................................................59
b.  Friendly Forces Course of Action........................................................................................59
c.  Course of Action Input to STAFFSIM...................................................................................61

C.  SCENARIO EXECUTION....................................................................................................................62
D.  STAFFSIM VERSUS SIMULATION REQUIREMENTS ..........................................................................67
E.  SUMMARY ......................................................................................................................................69

VI.  CONCLUSIONS ............................................................................................................................71

A.  CONCLUSIONS ................................................................................................................................71
B.  FUTURE WORK ...............................................................................................................................72

1.  High Resolution Combat Models ..............................................................................................72
2.  Battlefield Operating Systems...................................................................................................72
3.   System Performance ...............................................................................................................73
4.  Field Experimentation ..............................................................................................................73

C.  SUMMARY......................................................................................................................................73

APPENDIX A: SELECTED IMPLEMENTATION CODE LISTINGS..............................................79

APPENDIX B: ACROYMNS..............................................................................................................105

LIST OF REFERENCES....................................................................................................................107

INITIAL DISTRIBUTION LIST........................................................................................................111



ix

LIST OF FIGURES

Figure 3.1:  STAFFSIM Components ......................................................................................................26
Figure 3.2:  Flora.....................................................................................................................................27
Figure 3.3:  SimBuilder Displaying the CompanyBuilder Panel............................................................... 28
Figure 3.4:  ExecutiveOfficer Configured to Build Movement Orders ......................................................29
Figure 3.5:  Component Interface Flow Chart Diagram ............................................................................32
Figure 3.6:  STAFFSIM Component Communication...............................................................................33
Figure 4.1:  Component Communication Within a Container....................................................................35
Figure 4.2:  BattleSim Component Types.................................................................................................36
Figure 4.3:  Event Graph Snippet for Movement Event Scheduling ..........................................................38
Figure 4.4:  Smooth Linear and Linear Acceleration Movement Models...................................................38
Figure 4.5:  Interplay of Vehicle Sensors, the Registrar and the Mediators................................................39
Figure 4.6:  Event Graph of the Detection Sequence.................................................................................41
Figure 4.7:  Detection Sequence Model....................................................................................................42
Figure 4.8:  Event Graph of the Engagement Sequence ............................................................................45
Figure 4.9:  FireControl Decision Flow Chart ..........................................................................................46
Figure 4.10:  BattleSim Component Interactions ......................................................................................50
Figure 4.11:  BattleSim Event Hierarchy..................................................................................................53
Figure 4.12:  BattleSim Event Scheduling................................................................................................54
Figure 5.1:  OPFOR Order of Battle.........................................................................................................59
Figure 5.2:  Friendly Forces Order of Battle .............................................................................................59
Figure 5.3:  OPFOR Course of Action .....................................................................................................62
Figure 5.4:  Friendly Course of Action.....................................................................................................62
Figure 5.5:  Assigning Unit Orders with ExecutiveOfficer........................................................................63
Figure 5.6:  CRPs Enter Sector and Make Contact ...................................................................................64
Figure 5.7:  AGMB Assaults ...................................................................................................................65
Figure 5.8:  AGMB Penetrates the Defense..............................................................................................66
Figure 5.9:  Main Body Penetrates the Defense ........................................................................................68



x

     



xi

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my thesis advisors, Dr. Arnold

Buss and LTC (Ret.) Bard Mansager for their wise counsel, patience and dedication

throughout my work on this thesis.

I would specially like to thank Dr. Michael Zyda, the creator of the Modeling,

Simulations and Virtual Environments (MOVES) curriculum at the Naval Postgraduate

School. Dr Zyda is an outstanding educator and visionary in his field. He has provided

the insight necessary to understand the complex problems facing the army’s modeling

and simulation community while providing the analytic and cognitive tools necessary to

find workable solutions for those problems.

Finally, I must recognize the loving support and self-sacrifice of my wife Hyun.

She has endured countless late nights, absent weekends and postponed family time all

without complaint. Without her understanding and support this work could not have

gotten off the ground.



1

I. INTRODUCTION

A. MOTIVATION

The old campaigner’s dictum that “in war all things are simple, but the simplest of

things is extremely difficult” is certainly truer today than at any other point in history. The

complexity and variety of military equipment and doctrine has grown exponentially over the

past hundred years.  Equally confounding are the speed at which operations can be conducted

and the extreme distances over which a strike can be delivered. The net effect of these

developments have combined to give an antagonist a myriad of potential options while

compressing the time available to consider them into impossibly short decision cycles.

A brigade commander in today’s army must employ a wide variety of weapons and

combat multipliers in order to accomplish the mission. These weapons range in complexity

from automatic rifles to multi-million dollar tanks, helicopters, and jet aircraft. On the

battlefield, however, weight of numbers or degree of technological sophistication alone

cannot produce victory.  Soldiers win battles. The soldier who can out-think and out-fight his

opponent is usually victorious. The brigade commander’s job is to not only lead soldiers into

battle but also to employ soldiers and their weapons at the right place and at the right time in

order to produce the best possible outcome.  Thus, commanders must decide how to best

employ the weapons and soldiers under their command.

The art of properly employing soldiers and weapons is not easily learned. The real

difficulty comes from employing the pieces of the team such that the whole is greater than

the sum of the parts. When a brigade combat team is properly employed it is said to have

synchronized itself for the mission. The complex task of synchronizing a brigade during a

combat mission falls upon commanders and their staffs.  These officers must ensure each

element of the brigade is properly employed. Brigade units must be given missions that are

supported by and in turn support other brigade units. Each unit must be utilized to magnify

its strengths and mask its weaknesses. When employed in this manner, a brigade is a

synchronized team and the potential for success is very high. Otherwise, the outcome of the

battle could come down to the flip of a coin or worse.



2

In its capstone doctrinal manual, FM 100-5 Operations [1], the army has described

synchronization as follows.

Synchronization is arranging activities in time and space to mass at the decisive point.
…  It means that the desired effect is achieved by arranging activities in time and space
to gain that effect. Synchronization includes, but is not limited to, the massed effects of
combat power at the point of decision. …  Synchronization usually requires explicit
coordination among the various units and activities participating in any operation. By
itself, however, such coordination is no guarantee of synchronization unless
commanders first visualize the consequences to be produced and how they sequence
activities to produce them. …  Synchronization thus takes place first in the minds of
commanders and then in the actual planning and coordination of movements, fires, and
supporting activities.

FM 100-5 concludes its discussion of synchronization with a clear statement of the purpose,

or End State, of synchronization.

In the end, the product of effective synchronization is maximum use of every resource to
make the greatest contribution to success.  …  To achieve this requires the anticipation
that comes with thinking in depth, mastery of time-space-purpose relationships, and a
complete understanding of the ways in which friendly and enemy capabilities interact.

In the final analysis, the brigade’s fight must be synchronized if victory is to be

assured.  Conversely, failure to synchronize can result in battlefield defeat. For soldiers at the

sharp end, life itself hangs in the balance. How, then, is synchronization achieved? How do

army staffs solve the synchronization problem, if at all? Can simulation be used to help staffs

achieve synchronization?

These questions are of central interest for any army that hopes to win on the modern

battlefield. The complex sophistication of modern equipment combined with the decreasing

time available in which to properly analyze tactical options push staffs towards incomplete

analysis. Incomplete or hasty analysis provides for poor decision making. In essence, the

weight of the clock drives decision making instead of rigorous analysis.

For a military organization poor decision making is an unacceptable state of affairs.

In an army that is adverse to casualties, poor decision making cannot be tolerated. The real

question is whether proper analysis can be completed in the time available and, if so, how?

To answer these questions an understanding of how unit commanders and their staffs arrive

at tactical decisions and the tools they use is required.   To answer the question as to whether

a simulation can be used as a decision-making tool, this thesis presents a prototype of such a

simulation and evaluates its utility in speeding the decision making process and improving

the quality of the analysis.



3

B. BACKGROUND

Brigade commanders and their staffs achieve synchronization by carefully planning

missions within the framework of the Military Decision-Making Process (MDMP). When a

brigade-sized unit receives a mission the commander and staff must develop and implement a

plan to accomplish said mission.  The template they follow to arrive at the best possible

course of action is the MDMP.  The MDMP is broken down into a seven-step sequence [2].

                      Step 1.  Receipt of Mission.

                      Step 2.  Mission Analysis.

                      Step 3.  Course of Action Development.

                      Step 4.  Course of Action Analysis.

          Step 5.  Course of Action Comparison.

          Step 6.  Course of Action Approval.

          Step 7.  Orders Production.

This process is meant to provide a logical framework that allows commanders and their staffs

to rapidly arrive at, and execute, a course of action [3].

Within the course of action analysis step of the MDMP, the tool commanders and

staffs use to analyze, and thus synchronize, their developed course of action is the war game.

Within the context of the MDMP the war game is a mental exercise in which the assembled

staff officers simulate how they believe a course of action will unfold. One or more officers

role-play the enemy commander and fight a potential enemy course of action against the

friendly course of action being analyzed. In general, war games are conducted around a map

board. Staff officers move unit icons across the map simulating the enemy and friendly

course of action. When opposing units come in contact, each officer involved attempts to

visualize in his mind’s eye how the battle will unfold. He tries to find shortcomings in his

own plan that the enemy might exploit and then corrects the foreseen problems. Conversely,

he looks for shortcomings to exploit in the enemy course of action as well. The war game is

thus a comparison of each potential friendly course of action against each possible enemy

course of action [4].

 The actual resolution of battles during the war game is discussed among the staff

without the use of any analytical tools. For example, when two opposing forces come into

contact, the officer playing the enemy force might propose that, based on relative size of



4

forces, the friendly unit would be destroyed with the loss of a portion of the enemy force.

The officers then debate the merit of the suggestion while discussing options open at this

point to each commander. The product of the debate is not only who loses what, but also a

better understanding of what can potentially happen at this point in the battle and what must

be done for friendly forces to be successful. Better understanding leads to better

synchronization and better decision making.

It is easy to see that the war game places great cognitive demands on commanders

and staffs, since they must visualize the complex interaction of weapons and units in time

and space. To properly synchronize the course of action during the war game, staff officers

must fully understand time-space relationships, friendly and enemy unit

capabilities/weaknesses, and probable outcomes of friendly/enemy unit interactions.

Commanders and staffs must master the impact of time and space factors on the battlefield.

The arrangement of activities in time and space is a key challenge facing commanders today

[5].

      During the war game, can the debate about ‘who shot John’ be replaced with a

computer simulation that produces a probable outcome? Inserting a simulation into the war

game as an analytical tool can potentially reduce the cognitive burden on staff officers in two

important ways. First, the mental visualization a staff officer must currently develop of the

battle in his mind’s eye is replaced by the visualization presented by the simulation. Second,

the actual thought processes of evaluating the interplay of weapons, units, terrain and time

are replaced by the combat modeling of the simulation. The reduction of cognitive workload

will allow officers to focus their mental powers on synchronizing the plan and will provide

them the extra time needed to do the job right.

Can a simulation replace the mapboard and unit icons of today’s war game? Can

human estimates of unit abilities be replaced with accurate computer models of those units?

Can the subjective be replaced with the objective to improve analysis in the war game?

Instead of officers estimating the probable outcomes of battles, can those battles be modeled

accurately in a computer simulation? In other words, can the subjective judgement of humans

be replaced with probabilistic combat models that significantly reduce cognitive workload?

Are such simulations already available in the army’s training base today?



5

The army has fielded a large variety of simulations for use by tactical units. The

purpose of these simulations run the gamut from training rifle marksmanship to staff training

for brigade, division and corps staffs.  The purpose of all these simulations is to train

soldiers. The key point is that they are not for operational use. When units deploy,

simulations are left behind. Thus the world’s most technologically advanced military

machine enters combat with its staffs using paper, pencil, acetate and colored markers as the

primary tools with which to develop and analyze courses of action.  Can one of the currently

fielded simulations be easily adapted for operational use as a war game? In the following

section we will examine some of the existing combat simulations and assess their suitability

for this proposed usage.

C. FIELDED SIMULATIONS

Before examining the simulations currently in use by the army it is important to

understand some of the constraints under which brigade staffs operate.  The primary

constraint is time. How much time do brigade staffs have to conduct a war game and thus

analyze a course of action? The army’s doctrinal manuals do not specify an amount of time

to allocate to the war game. However, based on unit experiences in the field, the army’s

Center for Lessons Learned (CALL) has published example time lines for the MDMP. Those

timelines allocate between one and three hours for the war game [18]. Any simulation must

therefore be marshaled and analyzed within that time frame as well.

Brigade staffs labor under other significant constraints as well. Staffs do not have

trained computer technicians nor network experts available. The computers available are

generally mid-grade personal computers (PCs) at least one generation old. The amount of

available electricity is fixed and cannot support a large computer infrastructure.  Even if

power was available, space is at a premium. Brigade headquarters are mobile entities that are

frequently packed, moved and quickly re-established at a new location. The load carrying

capacity of the headquarters vehicles is fixed. When moved, brigade headquarters must be

fully functional in a matter of hours, usually less than four.

These constraints easily translate into a baseline of requirements that a simulation

must meet if it is to be used in operational war gaming situations. Military officers who are

not computer literate must be able to easily use the simulation. At no time must specially



6

trained technicians, civilian or military, be required. The simulation must not be static, but

interactive, allowing staffs to stop the action, rewind and explore the course of action in

detail. The scenario must be easily changed on the fly. The simulation must provide this

functionality while meeting the three-hour time constraint for the war game.

In terms of physical requirements the overriding factor is that it must be hosted on

PCs currently used by brigade staffs. The simulation must run on these machines without

displacing other applications. The only acceptable modifications to these machines to

accommodate the simulation must be inexpensive. Upgrades such as larger hard drives,

improved graphics cards and additional memory are acceptable. The ideal situation would be

a simulation that can run on the latest generation laptop computers or possibly even one of

the new generation of handheld personal assistants.

It must also be remembered that when and where a unit may be committed to combat

is completely unpredictable. For a simulation to be used in the war game it must be able to

integrate new terrain and unit databases in a very short time. For example, the ready brigade

of the 82d Airborne Division could be committed to combat from its barracks at Ft. Bragg,

North Carolina, in less than twenty-four hours. Following brigades can be in action days

later. Clearly, it is essential that any simulation that expects operational use be able to add or

update databases in a matter of hours.

While reviewing the simulations currently fielded it will be instructive to keep these

constraints/requirements in mind. The objective is to find a simulation that can be easily

adapted for field use in the war game, or failing that to conclude that a new simulation is

needed. We will examine three simulations, Janus, Brigade/Battalion Simulation and Corps

Battle Simulation.

1. Janus

Janus is an interactive simulation originally developed at the Lawrence Livermore

National Laboratory to model nuclear effects.  Janus has since evolved into three main

versions used extensively by both the combat developments and training communities within

the army [7]. The Janus simulation is an interactive, high-resolution model of ground combat

at the entity level. Entities within the simulation represent individual soldiers, tanks, aircraft



7

etc. In the training mode, Janus allows staffs at the brigade and battalion level to train

synchronization of the Battlefield Operating Systems (BOS) [8].

The hardware requirements to run Janus are substantial. Janus is a networked over a

thin wire Ethernet. Its standard configuration consists of two sets of Hewlett Packard (HP)

715/50 workstations. Each set consists of eight workstations with a ninth providing host

services. The minimum possible configuration is two workstations, one for each side [8].

Janus is currently undergoing several major upgrades. The HLA Warrior project

involves updating the software architecture and porting the source code from Fortran 77 to

C++. The target host computer for the new system is a Pentium 133 PC [8]. A second

initiative to move Janus to PCs is currently being fielded to National Guard units. This

version hosts the simulation on notebook computers running the LINUX operating system

[16].

In most fielded configurations, Janus requires some degree of contract civilian

support staff to operate and maintain the simulation. The LINUX version requires the least

support staff overhead. The National Guard units fielding this version receive New

Equipment Training (NET) when fielded then assumes complete responsibility for operating

and maintaining the simulation [16]. At the other extreme, many active duty component

installations have as many as one civilian technician per workstation.

Terrain databases are a another shortcoming of Janus with respect to operational use.

Currently, there are approximately 286 terrain databases ranging in size from 7 by 7

kilometers (km) to 100 by 100 km. Terrain databases require one to two days to develop and

place into play. The databases are developed from digital terrain data provided by the

National Imagery and Mapping Agency (NIMA) [16].

Janus takes a significant amount of time to configure for a specific scenario. Inputting

the units for a brigade size fight can take upwards of three days. Once the simulation has

been populated it can then take an additional two to eight hours to position the units and

assign them their initial orders [16].

Because of these drawbacks, Janus is not a candidate for operational use in the field.

Although Janus can be hosted on PCs and terrain databases can be developed with relative

ease, the time requirements to populate and initialize scenarios is too great. The primary

driver for these long lead times in the basic entity size.  Deploying, orienting and assigning



8

orders to each individual vehicle in a brigade sized unit and its opposing enemy unit is a

tedious and time consuming task that takes much longer than the three hours the brigade staff

has to conduct the wargame.

2. Brigade/Battalion Battle Simulation (BBS)

BBS was designed to be a Command Post Exercise (CPX) driver for brigade and

battalion staffs.  BBS allows commanders to conduct exercises for the training of staff

procedures and integration [10]. BBS uses high-resolution combat models to simulate the

interplay of combat units from single vehicle through brigade in size. The basic level entity is

an individual vehicle. Like Janus, BBS is interactive and models a very wide range of

activities typically found on the modern battlefield including air, ground, and a variety of

logistics operations [11].

Like Janus, the hardware requirements to run BBS are extensive. Five Digital

Equipment Corporation (DEC) Microvax 3100 computers support ten workstations in the

standard configuration [11]. Each workstation consists of three DEC VT320 terminals, a

printer, an Amiga HD PC for graphic overlays, a laser video disc player for the terrain model

and a 26 inch color monitor [10].

The initial terrain model used in BBS suffered from the same availability problems

Janus terrain does. The estimated cost to develop a new terrain database is in the range of

$150, 000 and requires approximately six months to complete [12]. The latest version of BBS

has significantly improved both the cost and time required to develop new terrain databases.

The laser videodisc format has been replaced with a digital terrain model based on digital

terrain products readily available NIMA. With the digital terrain model a new database can

be developed in as little as three weeks for an average cost of between $12,000 and $15,000

[12].

Can BBS be modified for operational use by a brigade staff? Undoubtedly the system

could be completely redesigned to meet the requirements but the cost to do so would be high.

Although turn around time for new terrain databases has improved significantly it is still too

slow for operational use. Furthermore, new databases require outside support to develop.

Brigade staffs do not have the time required to do this. To be used operationally terrain

database creation must be simple enough that brigade staffs can build new ones directly from



9

NIMA products without third party assistance. The hardware requirements for BBS fall

completely outside the ability of brigade staffs to transport and install. To support such a

system addition vehicles and personnel would have to be added to the unit tables of

organization. In the end, BBS is an excellent training system but its utility ends there.

3. Corps Battle Simulation (CBS)

CBS is the army’s division and corps staff trainer. Like BBS, CBS is primarily used

by the army as a CPX driver. Unlike Janus and BBS, CBS does not employ high-resolution

combat models. Instead, CBS uses an attrition combat model based on Lanchester equations

[13]. The size of the basic entity in CBS is the battalion. CBS models ground combat, rotary

and fixed wing aviation, logistics and special forces [14]. Although CBS is targeted for staffs

at echelons above brigade, most brigade and battalion staff officers have participated in

multiple CBS driven exercises. Because CBS uses a different system of combat modeling,

Lanchester equations versus high-resolution models, it is useful to study its feasibility for use

at lower echelons.

The CBS hardware suite is fairly extensive. CBS is a networked simulation run over a

local or wide area network. The simulation is hosted on a DEC VAX 7620 computer. The

host is networked with multiple MicroVAX 3100/40 computers each of which support up to

three workstations. A workstation is typically configured with a television monitor, graphics

pad, laser video disc player, graphics generator, printer and three video terminals. A recent

system upgrade has replaced the VAX 3100/40 computers with VAX 3100/85 computers.

The new computer can support up to six workstations. A typical division level exercise

requires approximately 60 to 75 workstations [17].

CBS requires support staff to setup and run the simulation. To execute a generic

division level simulation, a minimum of four trained technicians is required per shift. This

figure assumes that all the workstations and the host computer are co-located. The setup time

for just the equipment is approximately two man-hours per workstation. The lead-time to

populate the simulation with the correct mix of units can be as long as 30 days. However, in

our circumstances it can be assumed that the unit database is already built. Once the unit

database is established it can take upwards of 100 man-hours to position units and assign

missions [17].



10

The terrain databases for CBS are extremely limited. There are currently seventeen

such databases [15, 17]. The lead-time to develop new terrain databases can be as much as

six months with an average cost between $50,000 and $100,000 [17].

CBS does not appear to be a good candidate for operational use by brigade staffs. The

simulation cannot be hosted on a single PC, terrain databases cannot be easily generated, and

civilian or specially trained military support staffs are required. Although an aggregate

combat model holds out the potential for reduced computational requirements, and thus a

higher probability of hosting the simulation on a single machine, CBS is not the answer.

The currently fielded simulations were designed to be training tools for unit

commanders and staffs. These simulations are all run from fixed facilities. The army

continues to use these simulations in this role with great success but they are not suitable for

use in a field environment. To develop a simulation for field use it is important to understand

how the army trains units in a field environment. The most realistic and demanding training

environments in the army today are found at the army’s Combat Training Centers (CTC).

D. COMBAT TRAINING CENTERS

The army has three CTCs, The National Training Center (NTC), Joint Readiness

Training Center (JRTC) and Combat Maneuver Training Center (CMTC). A CTC is a

military installation that provides the most realistic, stressful and intense training

environment possible short of live combat. Brigade and battalion size units travel to a CTC to

train in that environment for what is typically a one month period. A unit visit to a CTC is

termed a rotation and units typically visit a CTC once every 18 to 24 months.

The CTCs provide a wide variety of services to the visiting unit. The three most

important are a dedicated, live, free playing opposing force (OPFOR), an instrumented

battlefield and a cadre of Observer/Controllers (OCs).

The OPFOR is a resident unit at a CTC that fights against the visiting unit is a series

of battles during the rotation. The mission of the OPFOR is to decisively defeat the visiting

unit using the weapons and doctrine of an enemy force. For example, in the 1980s, OPFOR

equipment and doctrine closely resembled that of the Soviet Union. It is important to

understand that the OPFOR is not a harnessed enemy. OPFOR commanders are given a

mission within a scenario and the freedom to accomplish that mission as they see fit. The



11

only constraint is that of OPFOR doctrine. The purpose of the OPFOR is to provide the

visiting unit a doctrinally correct representation of an enemy unit.  To ensure realism the

OPFOR is a free playing, thinking opponent whose sole goal is defeat of the visiting unit.

The instrumented battlefield is critical to successfully capturing the strengths and

weaknesses of the visiting unit. For example, the computer systems at the NTC capture the

movement and engagements of almost all the combat vehicles participating in an battle. After

the battle has ended, it can be replayed on a computer screen and studied in order to discover

what occurred and why. The benefit is obvious: the detailed study of both successes and

failures allow units to correct deficiencies and sustain strengths.  The huge amount of data

captured by the instrumentation replaces human perceptions of what happened in a confused

battle situation with facts. The replacement of perception with fact is a significant step

towards objective analysis.

The final service provided to the visiting unit by a CTC is the cadre of OCs, seasoned

officers who observe the visiting unit plan, prepare and execute each mission. At the NTC,

for example, a group of approximately 400 OCs fans out across all elements of a 3000-man

visiting brigade. The purpose of an OC is to observe the unit as they plan, prepare, and

execute a mission and then provide objective feedback to the unit. The army uses the After

Action Review (AAR) to provide feedback to the visiting unit. The AAR is an objective look

at what happened and why. The OC leads the discussion during an AAR and helps units see

their strengths and weaknesses.

The CTC OCs provide an additional service for the army as a whole. After each

rotation a summary of observed strengths and weaknesses is compiled and sent to the Center

for Army Lessons Learned (CALL). At CALL the observations are catalogued against

specific training tasks and then published for army wide use. Thus, at the unit level, brief

synopsis of observed training trends are available as a resource. The trends presented in these

publications are the latest training data available and represent the wealth of the operational

knowledge and experience found in the OC groups.

E. SUMMARY

The difficult task of synchronizing a brigade combat team requires a high level of

cognitive thought from staff officers. The tools currently available do not help staff officers



12

think through synchronization problems nor to visualize complex time-space-unit capability

relationships. A tool is needed to reduce mental workload on staff officers so that they can

focus on synchronization issues. Employment of a simulation during the war gaming step of

the MDMP would be an example of such a tool.

The simulations currently fielded by the army do not measure up to the task at hand.

In general, they cannot be hosted on a single PC, they require specially trained staff to

operate, the time to build a scenario is far too lengthy, and terrain databases take far too long

to generate. The simulations currently fielded by the army were initially fielded in the early

to mid 1980s. PC technology at that time could not support complex combat simulations. As

a result, the current suite of simulations run on UNIX machines and has outdated methods of

developing terrain databases. These simulations are essentially static, require large numbers

of outdated computers, and use obsolete graphics rendering hardware.

A new simulation is needed to support real time use in the field. The simulation must

be hosted on a single PC. Terrain databases must be easily generated from digital terrain data

available from NIMA. It must be possible to develop these databases in a matter of hours,

potentially while in route to a new area of operations. Scenario generation must be fast,

preferably less than thirty minutes, and the simulation must run in less than three hours. Of

equal importance is the simulation’s ease of use. The simulation must not require advanced

computer skills or special training of any nature. Brigade staffs do not have the time or the

personnel to dedicate to operating and maintaining a simulation. In short the simulation must

resemble commercial application software found on modern PCs: easy to use and

maintenance free.

F. SUMMARY OF CHAPTERS

The rest of this thesis justifies the requirement for a new simulation and presents a

prototype for the type of simulation required to support wargaming step of the staff planning

process. The remaining chapters of this thesis are organized as follows.

• Chapter II: The Military Decision-Making Process.  The MDMP is explored to a

moderate degree of depth so that the process a new simulation will support is fully

understood.



13

• Chapter III: STAFFSIM.  The software component architecture of the simulation

is explained.

• Chapter IV: BattleSim.  The software component architecture for the simulation

module of STAFFSIM is developed.

• Chapter V: STAFFSIM Implementation.  A typical scenario presented to brigades

training at the NTC is presented and run using STAFFSIM.  The results of the run

are analyzed against the requirements for a simulation tool presented in earlier

chapters.

• Chapter VI: Conclusions. The utility and limiting factors of the new simulation or

discussed. Recommendations for future work are also suggested.



14



15

II. THE MILITARY DECISION MAKING PROCESS

A.       PURPOSE OF THE MDMP

Tactical decision making is an ongoing process. Even while one battle is being

fought, unit staffs are busy planning and preparing for the next. Decisions about ongoing

operations must be undertaken concurrently with decisions and planning for future

operations.  The MDMP provides the framework within which the commander and staff

make decisions [3]. Within the MDMP information is collected and logically analyzed

enabling the commander and staff to develop the best possible course of action COA to

achieve the mission [4].

In order to be timely and effective, a staff’s implementation of the MDMP must be

flexible, comprehensive, continuous, and focused on the future [2]. Flexibility relates

primarily to the time available to complete the process. Staffs must not become rigid; they

must be able to smoothly transition to an abbreviated decision making process when the

situation warrants. Staffs must ensure all factors affecting the mission are carefully

considered. These factors include friendly forces and capabilities, likely enemy forces that

will be encountered and the environment. The staff planning process has no real beginning or

end. Staff estimates are continuously updated as new information becomes available. In turn,

if new information warrants, combat plans and orders are updated as well. Finally, decision

making is about arranging activities in time and space such that future events cause the

enemy to be defeated. “Statistical record keeping is of little value” [2]. Military decision

making is about making decisions that will influence future events, not keeping an accurate

log of what has or is happening.

B. METHODOLGY

As mentioned in chapter one, the MDMP process has seven steps: mission receipt,

mission analysis, course of action development, course of action analysis, course of action

comparison, course of action approval and orders production. This section will briefly

describe three of these steps; mission analysis, course of action development, and course of

action analysis. This discussion will allow the reader to gain an appreciation for the context



16

in which it is proposed to use simulations as a real time, operational decision support

tool.

1.   Mission Analysis

Mission analysis is the framing of the problem at hand, usually a tactical mission. The

purpose of mission analysis is to allow the commander and staff to “see the terrain, see the

enemy and see themselves within the context of the higher headquarters fight” [6]. It is

important to understand that mission analysis is not the study of  ‘how to’ accomplish a

mission but is instead a study of what must be accomplished, what resources are available,

and what constraints exist. In essence, mission analysis serves to ensure that the problem at

hand is fully understood before potential solutions are developed. During mission analysis,

the staff gathers facts bearing on the mission, makes planning assumptions where gaps in the

available information exist and analyzes the higher commanders mission and intent as given

in the operations order [4].

The end state of mission analysis is the mission statement for the unit. The

commander participates with the staff in these activities as time permits, but as a minimum

he must approve the unit mission statement and then issue planning guidance to the staff [2].

The time available to complete mission analysis at the brigade level generally ranges from

one hour and 45 minutes to three hours [6, 18]. These times include the time required for the

commander to give planning guidance to the staff.

2.  Course of Action Development

Having gained a full appreciation for the problem through mission analysis, the staff

must develop potential solutions. The army terms the solution to a tactical problem a course

of action. Thus, the next step in the MDMP process is course of action development.  A

course of action is a “plan open to the commander that would accomplish the mission” [4].

Depending on time and resources available, the staff develops two to three courses of action

as a minimum. If time is available the staff should develop several courses of action for each

potential enemy course of action [4]. The time available to develop courses of action

generally ranges from one to two hours [6, 18].



17

In its staff manual, FM 101-5, the army defines five qualities of a viable course of

action.

Suitability. It must accomplish the mission and comply with the commander’s guidance.

Feasibility. The unit must have the capability to accomplish the mission in terms of
available time, space and resources.

Acceptability. The tactical or operational advantage gained by executing the COA must
justify the cost in resources, especially casualties.

Distinguishability. Each COA must differ significantly from any others. Significant
differences may result from the use of reserves, different task organizations, day or
night operations or a different scheme of maneuver.

Completeness.  It must be a complete mission statement [2].

A completed COA that embodies these qualities is not necessarily a detailed and complete

plan of operations.  Instead, it is a more general outline that will be fleshed out during course

of action analysis.

 The development of a COA is a six-step process. Development begins with an

analysis of force ratios and proceeds through generation of options, arraying forces,

development of a scheme of maneuver, assignment of headquarters and ends with the

drafting of COA statements and sketches. Good COAs position the force for future

operations, allow flexibility to meet unforeseen circumstances and provide the maximum

latitude possible for subordinates to exercise initiative [2].

            3.  Course of Action Analysis

The purpose of course of action analysis is to identify the single COA developed

above that accomplishes the mission while minimizing casualties and best positions the force

for future operations [2]. COA analysis helps determine how to maximize combat power,

protect the force, and minimize collateral damage. During COA analysis the commander and

staff develop a shared vision of the battle, determine resources required and how to allocate

them, how to focus the intelligence collection effort and identify coordination requirements

in order to produce a synchronized brigade plan of operations [2].

The primary tool used by brigade staffs to analyze COAs is the war game. The war

game is an attempt to visualize how a battle will develop [2]. It stimulates thought about the

COA and provides insights that otherwise might not be understood. The process of war

gaming fleshes out a generalized COA into a plan of operations. In other words, the details of



18

the COA are worked out and synchronized.  During the war game the strengths and

weaknesses of each COA are determined [2].

The central framework used by the staff in the war game is a discussion of the battle

in terms of action, reaction and counter-action [2]. For example, if the enemy attacks a

friendly unit, that is an action. How the friendly force responds to that attack is a reaction.

The enemy’s response to the friendly reaction is then a counter-action. Thus, a COA is

analyzed by a discussion of action/reaction/counter-action at each anticipated critical point in

the battle. The visualization of how actions, reactions and counter-actions will unfold and

their interplay on the battlefield is an entirely mental process for each of the involved staff

officers.

Like most parts of the MDMP, the war game has rules that govern its conduct and

steps that are followed to execute it. It is informative to review these rules because they shed

light on how difficult a mental process the war game actually is and they demonstrate the

natural pitfalls that must be avoided if the war game is to be successfully completed.

1. Remain objective, do not allow personality nor the sensing of what the commander

wants to influence decisions. Officers must avoid defending a COA solely on the

grounds that they developed it.

2. Accurately record advantages and disadvantages of each COA as they become

apparent.

3. Continually assess feasibility, acceptability and suitability of the COA. If a COA fails

any of these tests it must be rejected.

4. Avoid drawing premature conclusions and the gathering of facts to support such

conclusions.

5. Avoid comparing one COA with another during the war game. Course of action

comparison occurs only after all COAs have been analyzed [2].

Because the war game makes such high cognitive demands these rules are frequently

violated, thus damaging the validity of the war game and reducing the quality of the analysis.

The first and fourth rules are particularly easy to violate. It is simple human nature to give the

boss what one perceives the boss wants. It is just as easy to reach a premature conclusion and

then analyze subsequent data in light of that conclusion instead of using that data to reach an

objective conclusion.



19

Remember that during the war game the commander and staff are trying to visualize

the complex time-space relationships and unit interactions of a future battle. Within that

visualization they are simultaneously attempting to find shortcomings in their own and the

enemy’s COA while ensuring that they remain completely objective. It is readily apparent

that the war game places huge cognitive demands on the officers involved. Given the high

mental workload imposed by the war game, how well do unit staffs measure up to the task of

war gaming COAs into synchronized plans of battle?

C. COURSE OF ACTION ANALYSIS IN PRACTICE

Perhaps the best source of information on how well units conduct course of action

analysis is the cadre of observer/controllers at the army’s Combat Training Centers (CTC).

The CTC OCs routinely observe unit staffs at the brigade and battalion level conduct the

MDMP to include war gaming. The OCs coach unit staffs to improve their execution of the

MDMP and document observed shortcomings. OCs observe units from all over the army and

from all branches. They see it all. The army has no other group of officers with as much

direct experience with war gaming, its benefits and its typical pitfalls.

The documented observations of OCs are collected and published for army wide use

by the army’s Center for Army Lessons Learned (CALL) at Fort Leavenworth, Kansas.

CALL publishes a list of observed training deficiencies on a roughly semi-annual basis.

These lists of observed trends provide the best possible insight into how well the army is

conducting the staff planning process. Some observations on COA analysis and war gaming

in particular, as well as the issue of CALL’s Priority Trends in which they appeared are

provided below.

Units have the most difficulty with war gaming. During a rotation most units improve
their performance with the various phases of the MDMP with wargaming being the one
exception [19].

The war gaming phase of the Military Decision-Making Process (MDMP) is habitually a
weakness for the task force staff [19].

War gaming is the most difficult step in the Military Decision-Making Process (MDMP)
for units to complete successfully. Units have continued to struggle with this training
issue for the past 10 years [19].

Wargaming is not universally understood and conducted by staffs to the degree and
level necessary to ensure success [25].

The greatest shortfall in the planning process is the inability to synchronize the task
force because of inadequate wargaming [24].



20

Units continue to experience problems during execution that can be traced back to
flawed wargaming during the planning process [23].

While somewhat general in nature these quotes bring to light two important facts.

First, the war game is a significant problem for most unit staffs. Staffs are not conducting the

war game to standard, so course of action analysis suffers as a result. If course of action

analysis is faulty, decisions based on that analysis are then potentially compromised. Second,

the difficulty with war gaming is not a recent phenomenon but has hamstrung unit staffs for

at least a decade. This problem is not isolated to a single staff or to staffs from a particular

region, but is prevalent throughout the force.

The CTC trends also speak directly to the issue of synchronizing the course of action

during the war game.

Wargaming at the task force level rarely results in a synchronized plan at the conclusion
of the wargaming process [20].

The selected COA is never wargamed sufficiently to achieve effective synchronization
[21, 22].

Products derived from the wargame are rarely useable, doing little to synchronize the
plan or to key the commander to critical tactical decisions during mission execution [21].

If the war game is not producing a synchronized plan it is failing to achieve its

purpose. Further study of the CTC trends sheds some light on why the war game is failing.

The task force XO does not facilitate the process (wargaming), and the battle staff loses
its focus on the critical events that need to be wargamed and the relationship between
events and the decisive point [19].

Wargaming is not focused and does not synchronize the task force plan [22].

The wargame ends up taking all day or night with only the most aggressive participants
providing input and the rest of the staff writing their annex without fully synchronizing
their BOS (Battlefield Operating System) [22].

Usually, the S-2 and S-3 fight it out at the map board while the remainder of the staff
observes in silence [23].

Task Force staff’s wargaming either gets too detailed and never finished, or is extremely
superficial [21].

These quotes provide some insight as to why staffs have problems with the war game.

Failure to focus on actual analysis during the war game could be due to many factors. One of

these is almost certainly the heavy cognitive demand the war game makes upon the

participants. It is very easy for a staff officer to be a passive bystander, one who observes the

interplay but is not actually thinking about the plan. A second issue is how personalities can

affect the outcome of war gaming. Often, aggressive, dominant personalities tend to force



21

their opinion on the others. This is fine if the most aggressive officers are also always the

best analysts. Unfortunately, this cannot be guaranteed.

It is readily apparent that the war game is a difficult task for many, if not most, unit

staffs to effectively accomplish. An effective war game is absolutely vital to synchronizing a

combat plan. When a unit enters combat with a flawed plan it cannot achieve its full potential

on the battlefield.

D. POTENTIAL ROLE OF SIMULATION IN THE MDMP

The war game is an excellent candidate for introduction of a simulation into a real-

time, operational decision making process. A computer simulation can easily generate the

visualization of time-space-unit capability relationships that will enable staffs to better

synchronize their plans. The training simulations discussed in chapter one do exactly that.

These simulations have gained acceptance and are in widespread use as training tools

throughout the army. Unfortunately, they do not meet the requirements for operational use, as

discussed in chapter one.

If the visualization of the interplay of unit activity in time and space can be presented

to staff officers in the war game, then their mental workload can be greatly reduced. The

reduction in cognitive effort will allow staff officers to more fully focus on synchronization

issues. The simulation should serve the added purpose of keeping the war game focused.

Officers will no longer be caught up in trivial details of ‘who shot whom’ but can instead

focus on the bigger picture of how well a COA is synchronized. The next two chapters of this

thesis present a prototype simulation that demonstrates how a simulation could be used as an

analytic tool during the war game.



22



23

III. STAFF SIMULATION

A.       INTRODUCTION

In chapter one the importance the army places on synchronization was established.

The war game is the tool the army uses to synchronize COAs. In chapter two it was

established that the war game generally fails to synchronize a COA. It was proposed that a

simulation could greatly enhance the synchronization through a reduction in mental workload

imposed on staff officers by the war game. Unfortunately, as discussed in chapter one, none

of the simulations currently fielded are suitable for this purpose. Therefore, a simulation that

addresses the needs of brigade staffs in a field environment is needed. Chapter one identified

the following characteristics for such a simulation.

• The simulation must be run in a period of one to three hours

• The simulation must be easy to use, requiring no special training of any type.

• The host for the simulation must be a smaller machine, such as a PC.

• The simulation must not require specially trained technical support staff.

• New terrain databases must be quickly and easily built.

From these requirements two additional characteristics can be inferred. For the

simulation to be run in less than three hours, scenario initialization, the building of units and

assigning them orders, must be simple and fast.  Building and initializing scenarios should be

simple enough that it can be done during COA development and not detract from time

allocated to the war game. Preferably, the time required to initialize a scenario should be less

than thirty minutes.

Requiring no technical support staff has deeper implications. For a simulation to be

useful, it must evolve with conditions on the battlefield. As new weapons and organizations

are deployed, the simulation must have the ability to swiftly incorporate these new entities. A

simulation must therefore be capable of being upgraded by non-technical users.  This is not

to say the simulation must give users the ability to easily author upgrades, but rather,

upgrades should be constructed in such a manner that users can install them.

Chapter two reviewed the context in which a new simulation could be employed as a

real time decision support tool. Here too, there can be found an implied requirement for the



24

new simulation. The methodology of the war game calls for the battle to be explored in terms

of action/reaction/counter-action at critical points. As the war game proceeds the staff needs

the ability to modify the plan on the fly in order to more fully explore the COA. Thus the

simulation must be fully interactive, allowing the staff to move forward and backward in

time and quickly analyze several variants of the COA at each critical point.

The requirements enumerated above provide a gross specification for the required

simulation. This thesis presents a prototype simulation named Staff Simulation (STAFFSIM)

that aims to meet these requirements and thus be a useful decision support tool for brigade

staffs.  STAFFSIM meets many of the requirements by the adoption of a software component

architecture. The remainder of this chapter will discuss how STAFFSIM is constructed with

software components and the advantages of doing so. The first step is to understand the

advantages of programming with reusable software components.

B. SOFTWARE COMPONENTS

What exactly is a software component? Intuitively a component is something that is

one part of a greater whole. Unfortunately, a more precise definition is needed if the concept

is to be completely understood. One such definition is provided below.

A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties [26].

This definition implies two fundamental characteristics of software components.

First, independent deployment implies that a component is in fact a stand-alone

entity. In this context stand-alone means that a components internal implementation is

independent of other components. The only external dependencies the component needs to

function properly are defined in the component’s interface. This allows a component to be

used by a wide variety of different systems. In order for a system to be built using

components of this nature only the requirements specified in the interface must be met. If a

component depends upon another component in any other fashion it is not capable of

independent deployment. Furthermore, because a component is a unit, it is deployed as a

whole; it can not be split or partially deployed.  Just as one of the components of a stereo

system cannot be cut in half and then used, so too with software components; it is an all or

nothing proposition.



25

Components are meant for third party composition [26]. Because a component is

deployed as a single unit, it is fully encapsulated. Thus third parties cannot access a

component’s internal implementation. Therefore, for a component to be composable by third

parties it must have a detailed user interface. The interface syntactically defines what the

component provides and what it requires.

The use of components has several distinct advantages over object oriented software,

the most obvious being software reuse [26]. In a perfect world the army would have a library

of software components that implement approved combat models. Simulation designers

could then use these components off the shelf again and again.  With reuse comes refinement

and ultimately software developers could expect off the shelf components to achieve superior

quality. Furthermore, the army could make such a component library open-source, or in other

words, make the source code for each component freely available to developers. If software

components were open-source they could benefit from the intellectual insights and

experiences of a much broader base of developers. Thus combining component architecture

with open source code offers the opportunity for superior quality software that is easily

reusable.

To further understand the benefits of software components to STAFFSIM, it is

necessary to understand the different parts of a high-resolution combat simulation. First,

these simulations rely on several databases: one for terrain, one for weapon to vehicle hit and

kill probabilities, another for weather effects and so forth. They also include sets of

algorithms to handle movement, sensing, detection, and engagements. On top of these

functionalities there is usually a visualization of the simulation, such as a map display with

unit icons. The simulation may also include some type of graphical user interface (GUI) for

interactive play. In currently fielded simulations all of these are inseparable and are thus

“stove-pipe” solutions.

The functionalities described above could easily be thought of as individual

components. Thus a simulation could be composed of components such as a terrain model, a

weather model, a GUI interface, and the simulation itself which encapsulates all the required

algorithms. When built in this manner the simulation inherits all the advantages of

component design. Furthermore, as more components are written a user could pick and chose

from among several components that provide the same functionality. Thus, users could easily



26

tailor the simulation to their purpose. STAFFSIM aims to provide this kind of composability

in order to meet many of the requirements specified above. Keeping the advantages of

component design in mind, we will now discuss the component architecture of STAFFSIM.

C. STAFFSIM COMPONENTS

1.  The Components

STAFFSIM is composed of seven independent software components: BattleSim,

Flora, MessageCenter, SimBuilder, OverlayMaker, ExecutiveOfficer and Draftsman. These

components and their interactions are depicted in figure 3.1. Each of these meets the

definition of a component given above. In STAFFSIM’s case independence means that each

of these components executes its function completely without dependence upon, or

knowledge of, the other components.

Of STAFFSIM’s seven components four were developed as part of this thesis, two

were used off the shelf and the last exists in concept only. The two components imported off

the shelf are Flora and MessageCenter. These components are used as is and are integrated

into STAFFSIM using only their defined user interface. The unimplemented component is

Draftsman. A brief description of each component and its purpose follows.

Figure 3.1: STAFFSIM Components

MESSAGE
CENTER

FLORA BATTLESIM

SIMBUILDER OVERLAY
MAKER

DRAFTSMAN EXECUTIVE
OFFICER



27

The core component of STAFFSIM is the simulation, BattleSim. Its function is to

provide the combat models that will reduce the cognitive workload imposed by the war

game. BattleSim provides no other services. BattleSim itself provides no visualization of the

simulation or any kind of direct user interface. These services are separate functions that

have nothing to do with simulating a combat action, and are best provided by separate

components.

The next component is Flora. Flora is perhaps the best demonstration of the software

component concept. Introduced by Norbert Schrepf [28], Flora is a simple map display tool

that is used to visualize the simulation. In addition to displaying maps, Flora can accurately

position unit icons on a map. To do so Flora specifies a message interface. If Flora receives a

properly formatted message, it can take the information in that message and represent it on

the map.

Flora is a good demonstration of the power of a component architecture. Flora does

not know of and does not depend on any other components. Flora was added to STAFFSIM

without modification. Thus Flora is a perfect example of software reusability, one of the

advantages of software components discussed above. Figure 3.2 presents a screen shot of

Flora displaying a 1:500,000-scale map.

Figure 3.2: Flora
SimBuilder provides a user interface for unit construction to the simulation.

SimBuilder allows the user to populate the simulation with the appropriate mix of units. Like



28

the rest of the components, SimBuilder is stand-alone. The user specifies the units to build

and SimBuilder sends the appropriate messages. SimBuilder and BattleSim are mutually

exclusive in purpose; they do not depend on each other’s existence in any way. The

SimBuilder user interface is depicted in Figure 3.3.

 ExecutiveOfficer provides the user an interface for commanding units. This allows the

user to reach into the simulation and give units orders. On user demand, ExecutiveOfficer

creates orders that are then passed to the simulation where they are executed.

ExecutiveOfficer can be run stand-alone or it can work with Flora to provide a more intuitive

point and click interface. Figure 3.4 shows ExecutiveOfficer configured to build movement

orders for a unit.

Figure 3.3: SimBuilder Displaying the CompanyBuilder Panel



29

Figure 3.4: ExecutiveOfficer Configured to Build Movement Orders

Draftsman is a tool for drawing military graphics. It interacts with Flora in the same

manner as ExecutiveOfficer and may be operated independently of the other components.

The last component is OverlayMaker, a by-product of Flora. Flora does not have a well-

defined input/output interface; instead Flora can display messages which are objects of a

specified type. Because Flora is used off the shelf a local adapter is required; Overlay Maker

is that adapter. OverlayMaker receives messages from other components such as BattleSim

and ExecutiveOfficer. If those messages contain information that should be depicted on the

map display, OverlayMaker builds the correct message objects and forwards them to Flora.

This arrangement implies that OverlayMaker have some knowledge of the internal

implementation of Flora.

The discussion of STAFFSIM components thus far has made the claim that each

component is independent and this is indeed true. In fact, each component can be compiled

and run without the others present. To be effectively composed into an application, however,

some degree of knowledge about, and communication with the other components is required.



30

Just like a combat brigade, STAFFSIM is greater than the sum of its parts. The required

communication is achieved through two distinct mechanisms, the MessageCenter and

component interfaces.

2. Component Communication

The real utility of software components is the ability to combine them into a system.

In order for a component to be part of such a system it must be able to communicate with the

other components in the system. Simple communication however, is not good enough. A

component must be able to communicate without losing its ability to stand-alone or to be

composed into other, completely different, systems. STAFFSIM components meet this

requirement by structuring their communications with component interfaces and by passing

messages through the MessageCenter.

The MessageCenter[28] resembles a multicast IP address found in computer

networks. System components send all their messages to the MessageCenter. When the

MessageCenter receives a message it simply re-broadcasts it to all registered listeners. The

listeners then act on the message if appropriate, or ignore it otherwise.

The MessageCenter de-couples software components. The MessageCenter relieves

each component from the requirement of holding a reference to all other components. Thus

each component is completely unaware of the existence of other components. The

MessageCenter itself is not necessarily aware of all the components either. A component that

only sends messages does not register with the MessageCenter and thus the MessageCenter is

unaware of its presence. Even registered components are “known” in a very generic sense.

The MessageCenter only knows that registered components have a method named

handleNewMessage(ModEvent event) to which it forwards all messages it receives.

This architecture implies two modes of component operation. Components wishing to

receive message traffic simply register their existence with the MessageCenter. They can

then send and receive message traffic. Components that do no wish to receive message traffic

simply do not register. If a component does not register it does not receive messages.

However, it can still send messages, since registration is not required to be a message sender.

The format of messages in this system is extremely simple. A message is a Java

object with only two fields. The first is a reference to the message originator or source, of



31

type Object. The second field is the message itself, also a Java object. Since all Java objects

are a subclass of class Object, any object can serve as a message or a message sender. The

message can be as simple as the String ‘HELLO’ or as complex as a Hash Table filled with

Vectors of combat units. The flexibility of this arrangement allows component developers

much freedom in structuring their component interfaces.

The second piece of the communication infrastructure is the component interface.

Schrepf’s MessageCenter allows components to communicate with great ease. However, the

real question is whether one component can interpret the meaning of another’s message. It is

easy to be abstract but at some point the details of syntax must be defined. Message syntax is

defined in the component interface. A component interface is a collection of Java interfaces.

Each of the Java interfaces in the component interface defines one message format. For

example, BattleSims component interface might contain separate Java interfaces defining

message formats for new units, movement orders or orient orders. Figure 3.5 illustrates this

concept.

The software component in figure 3.5 has a single entry point for messages. When a

message is received it is examined to determine if it meets the requirements for any of the

message interfaces.  In this example, the message is first examined to determine if it meets

the requirements of the new unit interface. If the requirements for a new unit are met, the

message is read and the appropriate new unit is created. If the message is not a new unit

message it is examined against the orient order and move order interfaces in turn. If the

message does not implement any of the interfaces it is discarded.

If a component wishes to send a message that another component can understand it

simply instantiates a message object that implements one of the message receivers’ message

interfaces.  This arrangement promotes a great degree of flexibility. Programmers can build

message objects that suit their specific needs. The only requirement is for the message

interface to be implemented by the message object. Thus two programmers can encapsulate

the same message information in two entirely different message objects. On the receiving

side both of these messages will be understood in the same way.



32

Figure 3.5:  Component Interface Flow Chart Diagram

Figure 3.6 illustrates this concept. Components A and B both desire to send

component C a message instructing C to change the state of a database. In order for C to

understand the message both A and B must compose their message as an object that

implements component C’s change database interface. Observe however, that A and B

instantiate the required message objects but that these objects are not the same. In fact they

are of completely different types. Each one is suited to its own needs but can still be

interpreted by C.

Software Component

Message
Received

Implements
New Unit
Interface

Implements
Orient Order

Interface

Implements
Move Order

Interface

Component Interface

Read
Message

Respond to
Message

Discard
Message

End

                         Message implements a known interface and thus can be read
                         Message does not implement a know interface, cannot be read

Y

Y

Y

N

N

N



33

Figure 3.6: STAFFSIM Component Communication

D.  SUMMARY

STAFFSIM is an interactive simulation composed from seven independent software

components. Each component is a stand-alone application. When linked together through the

MessageCenter the components form a complete simulation even though each individual

component knows very little about its peers. Composition of the simulation from reusable

components gives the simulation developer the ability to pick and choose from the highest

quality components when building the simulation. It also allows the simulation to be quickly

upgraded. The only real requirements for a new or even completely rewritten component to

operate as part of the simulation are the component interfaces. Hence the system can be

quickly upgraded with improved components that are easily added to the simulation by the

user. Thus, the component architecture of STAFFSIM supports the aforementioned

COMPONENT  A
(Sender)

COMPONENT  B
(Sender)

Message Object A

Data1, Data2, Data3

Method1()
Method2()
MethodA()

MESSAGE
CENTER Message Object B

Data3, Data4

Method1()
Method2()

COMPONENT  C
(Receiver)

Interface

Method1()
Method2()



34

requirements for a new simulation. The core component of STAFFSIM is BattleSim.

BattleSim itself is constructed from software components and is discussed in the next

chapter.



35

IV.  BATTLE SIMULATION

A.       INTRODUCTION

BattleSim provides the STAFFSIM package with a Discrete Event Simulation (DES)

of combat between military vehicles. Like STAFFSIM, BattleSim utilizes a component

model. However, the context of the components is significantly different. Each STAFFSIM

component is designed to provide a single, basic functionality to the simulation. A BattleSim

component however, is designed to provide a single functionality to an entity within the

simulation. For example, in STAFFSIM, SimBuilder provides the simulation the

functionality of building units. In BattleSim, a component such as BasicMover provides an

entity in the simulation the ability to move.

BattleSim adopts the component model introduced by Arent Arntzen in his thesis,

“Software Components for Air Defense Planning”[27]. Arntzen’s concept calls for a

component to provide an entity with basic services to facilitate the easy composition of

components within a container. For example, to model a vehicle such as a tank, a group of

components is added to a container. Each component provides a separate functionality such

as moving, sensing, or shooting. When components are added to a container in Arntzen’s

system, the container takes on all the properties of the added components. Thus, the container

becomes a tank. Figure 4.1 depicts this arrangement.

Figure 4.1: Component composition Within a Container

In the tank example, the only component that has a physical location and that can

move is the BasicMover. Because the container, or tank, takes on the properties of all of its

Vehicle  (Container)

Basic
Mover

(component)

Moving

Basic
Sensor

(component)

Sensing

Basic
Weapon

(component)

Shooting



36

components, the tank has a location and can move. Thus, the tank delegates its movement

properties to it’s BasicMover component. When a sensor is added to the container the sensor

gets its location from the container, thus from the BasicMover. Furthermore, when the

BasicMover moves, the container and all of its components move as well.

It is important to understand that within this arrangement components do not provide

overlapping functionality. The BasicMover can move but can not sense and shoot. The

BasicSensor can sense but not move and shoot. The Vehicle, however, can move, sense, and

shoot.

The functionality that allows composition through containers is embedded within

Arntzen’s BasicModComponent. The functionality of moving, sensing and shooting is

included in BasicMover, BasicSensor and BasicWeapon. These components build on

BasicModComponent and are the basic building blocks BattleSim. These components are

discussed in detail below.

In addition to components that are used to build entities such as military vehicles

BattleSim has a second fundamental type of component. These components broker the

interactions between opposing entities and between entities and the environment. The use of

‘broker’ or neutral entities has the primary advantage of ensuring opposing entities obtain

only as much information about each other as their sensor capabilities and the environment

permit.

In BattleSim the ‘broker’ entities are the Registrar and the Mediator. These

components handle such tasks as determining the outcome of engagements, deciding who

can see whom, determining line of sight and so on. The general division of components and

their functionality is shown in figure 4.2. The following section describes the basic

components in detail and explains their interactions with the ‘broker’ components.

Figure 4.2:  BattleSim Component Types

Broker Components

• Registrar
• Mediator

Player Components

• BasicMover
• BasicSensor
• BasicWeapon
• FireControl



37

B. BUILDING BLOCK COMPONENT MODELS

There are four interfaces that define the component framework of BattleSim: Mover,

Sensor, Weapon, and FireDirection. Each of these interfaces has a default implementation,

BasicMover, BasicSensor, BasicWeapon and FireControl respectively.  The following

sections discuss these components and the combat models they implement.

1.  Mover and BasicMover

The Mover interface specifies the baseline functionality required for a component to

provide the position and movement functions within BattleSim. The actual functionality is

provided in the BasicMover component. BasicMover extends BasicModComponent and thus

is composable by container. In order to provide the functionality specified in the Mover

interface it is implied that BasicMover must model movement in some manner. BasicMover

models movement in a smooth linear fashion called a smooth linear mover [29].

The event graph for the smooth linear mover is shown in Figure 4.3. When a vehicle

desires to move it schedules a StartMove event.  When the StartMove event takes place an

EndMove event is scheduled at a time in the future equal to the time required to complete the

move.

The smooth linear model is depicted graphically in Figure 4.4. The smooth linear

mover is simple. When the mover begins to move it instantaneously accelerates to cruising

velocity.  During the move it maintains a constant cruising velocity. When the end point of

the move is reached it instantaneously decelerates to zero velocity. In effect, the smooth

linear mover does not model acceleration.

Although the movement model is fairly general it will certainly not suit all needs.

Changing the movement model is a relatively simple task. To change the movement model

developers must simply sub-class BasicMover or re-implement the Mover interface.  As

stated above, BasicMover provides all the functionality required to operate as a Mover within

BattleSim. When the subclass is written it must overwrite the methods listed below.



38

Figure 4.3: Event Graph Snippet for Movement Event Scheduling

• calcMoveTime()     Calculates the time require to complete the move

• getCurrentPos()       Calculates and returns the vehicles current position

• calcMoveDistance()      Calculates and returns the distance to be moved

The code within these functions implements the algorithms for the movement model.

Overwriting these functions in the sub-class allows the introduction a new movement model.

An example of a different movement model is one that provides for constant linear

acceleration. Although BattleSim does not currently implement a constant linear accelerator

the concept is depicted graphically alongside the smooth linear mover in Figure 4.4.

Figure 4.4  Smooth Linear and Linear Acceleration Movement Models

2. Sensor and BasicSensor

The sensing and detecting models in BattleSim are more complicated than the

movement model. Before the sensing model is explored in detail it is important to understand

the role of some of the other components in the system. Thus far we have discussed the

                                    tm     tm

Where  tm  is the time required to complete the move

START
MOVE

END
MOVE

                                                                                                                 Vc  =  Cruise Velocity
                                                                                                                 Tsm =  Start Move Time
Velocity                                                        Velocity                              Tem = End Move Time

           Vc                                                                  Vc

                  Tsm                    Tem        Time                       Tsm                       Tem    Time

                 Smooth Linear Mover                           Linear  Acceleration Mover



39

construction of a vehicle by adding various components to a container. The vehicle

constructed in this manner has no information about any other vehicles in the simulation

other than that provided by any sensors on the vehicle. The vehicle does not know where

other vehicles are until the sensor detects them, but the sensor cannot detect them because it

does not know where they are.  The simulation is thus in a proverbial ‘catch 22’ situation.

This problem is solved with the introduction of the Registrar.  The Registrar is a

singleton component (i.e. each instance of BattleSim has only one registrar). The purpose of

the registrar is two-fold. First, the registrar monitors all the vehicles in the simulation and

begins the detection sequence when one vehicle can potentially detect another. The detection

sequence determines when vehicles detect each other’s presence based on the environment

and the capabilities of the each vehicle’s sensors.

The second function of the Registrar is to instantiate a Mediator to handle the

resolution of the detection sequence. Once the detection sequence has begun the Registrar

has completed its task. One Mediator is instantiated for each detection sequence that occurs.

Once instantiated, the Mediator handles all interactions between two vehicles. The Mediator,

however, is a one way component. The Mediator handles a detection sequence for a vehicle

pairing where one vehicle is the detecting vehicle and the other is the detected vehicle. A

second Mediator handles interactions in the opposite direction. This is a different detection

sequence and is handled by a different Mediator.  Figure 4.5 illustrates this concept.

Figure 4.5:  Interplay of Vehicle Sensors, the Registrar and the Mediators

                                                                                                                                    SMR
                                                                                                                  FOV

                                                                                                            Vehicle Two

                    Vehicle One                                                             SMR = Sensor Max Range
                                                                                                     FOV = Field Of View

REGISTRAR MEDIATOR
Instantiates

FOV
Start Move

MEDIATOR



40

In Figure 4.5 the action begins when vehicle one publishes a StartMove event. The

Registrar listens for, and hears the StartMove from vehicle one and makes a series of

decisions. First, the Registrar determines if vehicle two will enter the maximum range circle

of vehicle one’s sensor. If vehicle two will enter the maximum range then the Registrar

determines when and schedules an EnterRange event for that time. The EnterRange event is

the beginning of the detection sequence. The Registrar will also instantiate a mediator to

handle the rest of this detection sequence. For this newly instantiated mediator, vehicle one is

the detecting vehicle and vehicle two is the detected vehicle. The Registrar will also

determine if vehicle one will enter the maximum range of vehicle two during its move.  If so,

a second mediator is established. For this mediator the detecting vehicle would be vehicle

two while the detected vehicle would be vehicle one.

The detection sequence mentioned above begins when a vehicle publishes a

StartMove event. The StartMove event may or may not cause the moving vehicle to enter into

the sensor range of another vehicle. If the moving vehicle will enter the sensor range of

another vehicle, an EnterRange event is scheduled to occur at the time of entry. An

ExitRange event may be scheduled as well. The ExitRange event is not scheduled in cases

where the moving vehicle stops within the sensor range of the detecting vehicle.

Once one vehicle has entered the sensor range of another, the Mediator takes over.

The publishing of an EnterRange event causes the Mediator to determine if the moving

vehicle will enter the field of view (FOV) of the sensing vehicle. If it does, then EnterFOV

and potentially ExitFOV events are scheduled. When the EnterFOV event takes place the

Mediator checks for entry into the sensing vehicles line of sight (LOS). If the target vehicle

will enter the sensing vehicles LOS then EnterLOS and potentially ExitLOS events are

scheduled as well. Once one vehicle has entered another’s LOS it is time to calculate when

detection will take place.

The mediator determines time to detection based on the detection algorithms resident

in the detecting sensor. Detection in BattleSim means that one vehicle has seen another but

cannot necessarily see it well enough to determine what or who, it is. When a Detection event

takes place the Mediator schedules a Classify event. Classify means that the detecting vehicle

can determine what type of vehicle it is observing in terms of tracked vehicle or wheeled

vehicle or fixed position. Classification is an intermediate step on the road to being able to



41

fully identify what has been observed. When the Classify event occurs the Mediator

schedules an Identify event. The Identify event represents full knowledge of the detected

vehicle to include status as friend or foe and vehicle nomenclature such as T-80 or

HMMWV. The detecting sensor once again provides the times to classify and identify. The

algorithms to compute these times are similar to those for the time to detection.

Figure 4.6 depicts the event graph for the detection sequence. The event graph shown

in the figure is a scaled back representation. Due to the complexity of event scheduling and

interrupting a full event graph would be impossible to show on a single sheet of paper. The

graph shown in figure 4.6 allows the reader to grasp the basic flow of event scheduling

without becoming inextricably mired in detail.

Figure 4.6: Event Graph of the Detection Sequence

Figure 4.7 shows an example of what the detection sequence means to entities in the

simulation. The circle in figure 4.7 represents the maximum range of a vehicles sensor. The

white pie slice is the sensor’s field of view. In BattleSim this field of view is not necessarily

the sensor’s physical field of view but is usually a sensor’s assigned sector of search. The

gray areas within the field of view are dead space, areas the sensor cannot see into due to an

obstruction of some type.

Start
Move

End
Move

Exit
Range

Enter
Range

Exit
FOV

Enter
FOV

Un-
Detect

Exit
LOS

Enter
LOS

Detect

Class

ID

A schedules B in all circumstances

A schedules B if the correct conditions exist

A

A

B

B



42

The action starts when vehicle A starts to move. Vehicle A is the detected or target

vehicle while vehicle B is the sensing vehicle. When vehicle A enters the sensor range of

vehicle B an EnterRange event is published. At this time A is within the sensor range of B

but is not within the area that B’s sensor is searching. When A enters the search area of B an

EnterFOV event is published. In this particular example as A enters B’s field of view it is

also in B’s line of sight (LOS), thus an EnterLOS event is published at this point as well.

Once A has entered B’s LOS, detection is possible. Therefore at some point further along

Figure 4.7: Detection Sequence Model

the move path B will detect A. Classify and Identify events follow.  In this example A enters

dead space and thus an ExitLOS event occurs. When A emerges from the dead space it is

once again entering B’s LOS and thus the sequence of events repeats itself, circumstances

permitting. Finally, A exits the sensor range of B prompting an ExitRange event.

Like BasicMover the detection model provided in BasicSensor may easily be replaced

with a more sophisticated one. The model that is easily replaced is the one that actually

determines when one vehicle detects another.  As with BasicMover sub-classing BasicSensor

guarantees the new model will work within the system. However, when sub-classing

BasicSensor the following methods must be overwritten.

Dead
Space

Dead
Space

Outside Vehicle Field of View

Start Move

Enter Line Of Sight

Enter Field Of View

Enter Range

Detection

Exit Line Of Sight

Enter Line Of Sight
Identify

Classify

Exit Range

Classify
Detection

A

B



43

• getTimeToDetection(),     Calculates time until sensor detects target vehicle

• getTimeToClassify(),    Calculates time from detection until target is classified

• getTimeToIdentify(),     Calculates time from classification until identification

• getRightLimit(),     Returns sensors right limit azimuth

• getLeftLimit,     Returns sensors left limit azimuth

• inFieldOfView(),     Determines if passed location is within the sensors FOV

The code within these methods is the implementation of the detection algorithm.

3. Weapon and BasicWeapon

Of the four basic building blocks BasicWeapon is the simplest. The only functionality

encompassed in BasicWeapon is the ability to shoot.  Included within the ability to shoot is

the concept of ammunition availability. An integral part of each weapon is the ammunition

on hand for the weapon to fire. When the ammunition is expended, the weapon will no longer

fire.

Firing a weapon is a much more involved process than simply loading it and pulling

the trigger. Combat scenarios usually present decisions such as what target to shoot at or

simply deciding whether or not to shoot. To help the soldiers manning the weapons make

smart decisions under the stress of battle the army has developed fire control measures.

These control measures include trigger lines, sectors of fire and weapon control status. These

concepts are implemented in BattleSim but not in BasicWeapon.  A BasicWeapon simply

shoots when it is told to do so.

The functionality that BasicWeapon does not implement is obviously very important.

The decision of when to shoot and at whom to shoot requires a level of intelligence not

normally embedded within weapons themselves. The capability to make these decisions is

found in the weapons operator or in an automated fire control system. In BattleSim this

functionality resides in FireControl, which the next section discusses in detail.

4. FireControl

FireControl is the last of the basic building block components. A FireControl

component is added to a container representing a vehicle in the same manner as other

components. The FireControl is essentially the vehicle’s brain, deciding whom to engage and



44

when. The FireControl links the sensor to the weapon thus creating a weapon system. In

order to control fires in a manner resembling a military vehicle FireControl implements

many of the fire control measures found in military fire planning manuals.

Figure 4.8 shows the event graph for shooting at a target. The Detect, Classify and

Identify events are lifted from the sensing and detection event graph shown in figure 4.6.

Shooting is obviously directly linked to sensing. A target cannot be shot until it is detected.

Depending upon the weapon control status, a Detect, Classify or Identify event can trigger a

NewTarget event. If the weapon control status is restrictive then a NewTarget event will not

be generated until the target vehicle is positively identified.  In a permissive environment a

NewTarget event is triggered as soon as a target is detected.

A NewTarget event ultimately results in the addition of the detected vehicle to the

FireControls target queue. Once added to the target queue the detected vehicle will be

engaged. Once the detected vehicle moves to the top of the queue the FireControl orders a

weapon to shoot at it. This is represented by a Fire event.  At this point the detected vehicle

is removed from the target queue regardless of the outcome of the engagement. This is done

because neither the fire control nor the weapon can assess the results of the engagement.

Therefore, from the FireControls perspective the target has been handled.

The result of an engagement is received by the shooting platform via its sensor. The

Mediator determines the result of the engagement and informs the sensor. If the shot was a

miss, the sensor notifies the FireControl and the detected vehicle is re-added to the target

queue. If the shot hit, no further action is required by the FireControl.

Figure 4.8 shows the event graph for the engagement sequence. If the weapon control

status is weapons free then the Detect event causes a NewTarget event to be scheduled. At

the other end of the spectrum if the weapon control status is weapons hold, then a NewTarget

event will not be scheduled until the target is positively identified as signified by a Detect

event in the figure.



45

Figure 4.8: Event Graph of the Engagement Sequence

The event graph fails to depict the full detail of the FireControls decision making. In

order to give the reader a better understanding of the complexity of the decision a flow

diagram of the algorithm is provided as Figure 4.9. The decision cycle begins when the

FireControl receives notification of a new target. If the new target is in sector, the current

weapon control status (WCS) for in sector targets is checked. If the WCS allows engagement,

the FireControl checks to ensure the new target can be ranged and is inside the user set

trigger line. If the target is in range and within the trigger line then it is added to the target

queue. Once the target is added to the queue, the FireControl pops the first target off the

queue and orders a weapon to shoot at it. When the firing weapon receives the order to shoot

it checks to ensure ammunition is available. If ammunition is available a shot is fired and the

FireControl pops the next target off the queue. Targets are prioritized in the queue based on

the danger they pose to the detecting vehicle. The most dangerous targets are always first in

the queue.

Fire

New
Target

Detect Classify Identify



46

Figure 4.9: FireControl Decision Flow Chart

New Target Event

Is the new
target in the

weapons sector?

Does WCS
allow an IS

engagement?

Is target in
range or
trigger?

Will target
enter range or

tigger?

Order weapon
to shoot

Is ammunition
available?

Fire

Does WCS
allow OOS

engagement?

Will target
enter sector?

Yes

Yes

Yes

Yes Yes

Yes

Yes

End

No

No

No

No

No

No

No

Start

Legend:
WCS        Weapon Control Status
IS             In Sector
OOS        Out Of Sector
Trigger     Trigger Line, point at which firing commences



47

C. COMPONENT CONTAINERS

Containers are the mechanism by which components are composed into complex

entities. STAFFSIM uses two types of containers. The first type allows the composition of

components into vehicles using Arntzen’s ModContainer. The second allows the aggregation

of vehicles into units. In this case the container, or unit, should not inherit the properties of its

component vehicles and thus ModContainer is not used. The following sections describe

these two approaches to component containers.

1. Vehicles

The Vehicle interface is the primary container in BattleSim. When a component is

added to a Vehicle container the container takes on all of its properties. A property in this

context is any method that meets the following criteria.

• The method name begins with the word ‘get’.

• The method has no arguments.

• The method has a non-void return type.

These criteria are the same as those used by Java Beans. For example, suppose a component

with the method   public double getMaximumSpeed() is added to a vehicle named tank1. The

vehicle now has a property named maximumSpeed. This property is accessed with the

following call.

                      tank1.getProperty(“maximumSpeed”);

Thus tank1 now has a property called maximum speed. The functionality to make this

happen is all included in Arntzen’s BasicModComponent and BasicModContainer classes. In

the example above, the container class must either sub-class BasicModContainer or

implement the ModContainer interface. The component added to the container must extend

BasicModComponent or implement the ModComponent interface.

Arntzen’s work allows a container to assume the properties of components that are

added to it. Significant benefits could be gained if a component in the container could also

assume the properties of all the other components. Arntzen’s component system currently

does not support this functionality. To illustrate these concepts consider the following

situation.



48

Suppose a Sensor is added to a Vehicle. The sensor’s job is to detect targets and

report that information to the vehicle. Part of detecting a target is being able to report where

the target is. To do this the sensor must first know its own position. As discussed above, the

sensor has no concept of its own position. However, the vehicle does know its position from

its Mover component. Therefore, the problem is one of access to information that is already

available. The Sensor cannot get its position from the Mover because the Sensor does not

even know the Mover exists.

There is a simple solution to this problem. In BattleSim each component has a parent

property. This property is a reference to the container in which the component resides. Thus,

for the Sensor to get its location it simply queries its parent. Once the Sensor knows its

location it can accurately report the position of targets it detects.

The benefits of this arrangement are two-fold. First, the amount of code is

significantly reduced. Only one component must incorporate a specific property. Other

components that need this property can get it from their parent. Thus, there is a single source

for each property. The second benefit flows directly from single sourcing of properties.

Single sourcing eliminates potential conflicts between components that would otherwise

implement the same functionality. For example, what happens if the Sensor and the Mover

both implement a position property? The potential problem arises that although in a physical

sense these components are located in the same spot their position properties might not be the

same. The natural question is then, who is right? How does the vehicle determine who is

right? The introduction of the parent property eliminates this source of potential errors.

The vehicle container takes an additional task upon itself. When a resident component

publishes an event, the container intercepts that event and changes the source of the event to

be the container.  The purpose here is simple. In order to appear to other containers as single

entity events originating in the container must be sourced as if they originated from the

container, not a resident component. Thus containers intercept their component events and

change the source field from the component to the container.

The interception of resident component events has an associated disadvantage.

Messages inbound to a component are sent to the components parent container instead. The

container must then interpret the message and decide which component it is for.  The

introduction of the code required doing this limits the reusability of the container.



49

Consider the following example. A container designed to model a combat vehicle

might have resident components that represent sensors, weapons and a mover. While this

container could then be used to represent a tank, a self-propelled artillery piece or even a

navy ship (depending upon the components) it could not represent a machine tool on a

factory floor. The machine tool might have components such as a control unit, spindle, and

tool tips. The vehicle container could in fact include these components but could not handle

their message traffic because it does not contain the code to route inbound messages to the

proper component.

2. Units

The purpose of the Unit interface is to allow aggregation of entities. Military

organizations typically group men or vehicles into units and then units into larger units and

so on. The Unit interface models this military hierarchy. Grouping entities into units also

allows the user to interface with a single unit as opposed to ten to twenty vehicles that

composed that unit.

For example, in Janus for a user to order ten vehicles to move from point A to point B

the user must individually order each unit, a tedious and needlessly time-consuming task. A

second approach available in Janus is to command just one unit to make the move and have

the other nine mirror the movement of the first. This approach is certainly more time efficient

but results in the units moving in a manner that poorly models the behavior of military units.

BattleSim offers a different approach. The Unit interface allows the user to order a Unit to

move and the container ensures that the vehicles move in a manner consistent with military

movement techniques.

The purpose of the Vehicle interface is to allow the grouping of components to form a

single entity. Obviously, the purpose of the Unit interface is significantly different. Because a

unit has no need to assume the properties of its component vehicles nor to intercept and re-

source message traffic a different aggregation technique is used. The technique is much

simpler and requires much less overhead. A unit is simply a collection of vehicles. The

functionality provided by BasicModComponent and ModContainer are not needed and

therefore they are not used.



50

As an example consider BattleSim’s Platoon class which implements Unit. To build a

platoon vehicles are added to the platoon object up to a limit of six. The platoon object

monitors message traffic from its component vehicles but does not re-source the messages. In

BattleSim the basic entity is a single vehicle. Therefore the Registrar and the Mediators

know and understand how to interact with vehicles but not with units. Thus the source for all

messages must be a vehicle, the Registrar or a Mediator. The power provided by aggregating

vehicles into units is speed of user interface as discussed above.

D. COMPONENT INTERACTIONS

1. Introduction

A variety of BattleSim components have been introduced and their purpose discussed.

At this point is useful to take a step back and review primary players and how they fit into

the bigger picture of a BattleSim simulation. Remember that BattleSim simulates the fighting

between two brigade sized combat units. Within the simulation the primary entity is a single

vehicle. Thus BattleSim models the brigade level fight as the interaction of hundreds of

combat vehicles. Figure 4.10 diagrams this concept.

Figure 4.10: BattleSim Component Interactions

Figure 4.10 can be considered to be a snapshot in time of a BattleSim simulation. The

basic entities in play are vehicles, mediators and the registrar. The Registrar and the

Mediators are neutral entities while vehicles two and three oppose vehicle one. The diagram

Registrar

Vehicle 1

Vehicle 2

Vehicle 3

M-1

M-2

M-3



51

depicts three mediators. M-1 is handling the interactions between vehicles one and three

where vehicle one is the sensing vehicle and vehicle three is the target vehicle. M-2 is also

handling interactions between vehicles one and three. In this case however the sensing and

target roles are reversed. M-3 is handling interactions between vehicles one and two with

vehicle one the sensing vehicle and vehicle two the target vehicle. Vehicle one has not

entered sensor range of vehicle two and therefore no mediator has been instantiated to handle

interactions in the reverse direction.

The interaction of these entities results in a battle. Vehicles move, sense, shoot, kill or

are killed. Each of these discrete activities is represented in BattleSim by one or more events.

Events are the primary means of inter-entity communication. When an event occurs the

source entity notifies other interested entities. For example, if vehicle one in Figure 4.10 fires

at vehicle three, vehicle one schedules a Fire event. When the Fire event takes place vehicle

one notifies all other interested entities that it is firing at vehicle three. One of these

interested entities is Mediator one. When Mediator one is notified of the Fire event it decides

the outcome of the engagement. In this way publishing an event is very much like passing a

message. In this case however, each message represents a physical occurrence on the

battlefield at a specific time. The event passing mechanisms of BattleSim are discussed in

depth below.

2. Event Handling

a.  Listeners

            BattleSim adopts the listener pattern developed as part of Arntzen’s Modkit

component framework. Modkit listeners are very similar to Java Bean’s listeners. The basic

concept is that any entity that wishes to receive events published by another entity simply

registers to do so. Each entity keeps a list of registered listeners. When an entity publishes an

event it notifies all of its registered listeners. Thus listeners are able to track what an entity is

doing and respond to another entities actions.

            In BattleSim it is very important to place restrictions on who can listen to

whom. Recall that a mediator handles all interactions between two entities. The mediator

thus listens to both of the entities. The entities do not listen to the mediator nor are they

allowed to listen to each other.



52

            In a physical sense these restrictions are intuitive. It is unrealistic for an entity

to receive the events of an enemy entity. Receiving such information implies that an entity

knows precisely what an enemy entity is doing under all circumstances and at all times.

Essentially this state of affairs would be akin to riding in the enemy vehicle observing all of

its activities and listening to all of its communications. Thus, opposing entities are not

allowed to register as listeners to each other. Entities can not register as listeners to the

registrar or the mediators as well. The registrar and mediator publish information in their

events that is meant for one side or the other but not both. For example, if one vehicle enters

another’s LOS the mediator publishes and EnterLOS event. Only the detecting vehicle

receives this information. The detected vehicle has no way of knowing when it enters or exits

another vehicles LOS. Therefore, entities, or vehicles, cannot register as a listener to the

Registrar or the Mediators.

           The Registrar has no listening restrictions; it listens to all the message traffic

outbound from vehicles. This enables the Registrar to initiate the detection sequence as

required.  The mediators are restricted in who they listen to. Mediators listen to the Registrar

and the components they mediate. There is no real need for mediators to listen to each other

or to other vehicles. If the Mediators listened to vehicles they do not mediate they would

have to filter their inbound message traffic to eliminate messages that do not concern them.

This would introduce wasteful inefficiencies in the code.

b. Event Classes

            Events in BattleSim are objects. When a listener is notified of an event the

listener receives a reference to the event object. Thus the listener has access to all the

information in the event. The information passed in events is critical to the simulation.

Entities use the information they receive via events to properly respond to the event. For

example, a StartMove event contains who started moving, how fast they are moving and

where they are going. When the Registrar receives this event it uses the information to

determine if and when the moving vehicle will enter sensor range of other entities.

            Figure 4.11 shows the BattleSim event hierarchy. The baseline event is the

BasicModEvent introduced in Modkit. BasicModEvent provides the basic event functionality

but very little information. GenericModEvent expands upon BasicModEvent but provides no

information that is not general to all events. The last tier of events provides the specific



53

information required for entities to properly react to an event. Listed under this tier are the

specific events that are passed between entities.

c. Event Scheduling

            BattleSim is an event driven simulation; thus each event has a specific time

that it will take place. When an event takes place, the simulation clock is advanced to that

event’s time. Unfortunately, the Modkit component architecture upon which BattleSim is

constructed has no notion of time or of a continuously advancing clock. In order to schedule

events and have them occur at a future time this shortcoming must be addressed.

.

Figure 4.11: BattleSim Event Hierarchy

            To handle event scheduling BattleSim uses the event scheduling facilities

provided in Simkit [30]. Simkit has built-in event scheduling facilities and a clean interface

for scheduling and executing events. The definition of an event in Simkit is provided in the

SimEvent interface. Simkit provides a SimEvent abstract factory that creates SimEvents from

parameters provided by the user. To schedule an event the user provides the parameters to the

abstract factory and receives a SimEvent in return. The SimEvent is then passed to the Simkit

Scheduler where it is added to an event queue. When the event takes place the Simkit

Scheduler notifies the originating object via a callback. The process of scheduling an event is

depicted in Figure 4.12.

BasicModEvent

GenericModEvent

EngageEventEnterExitEventMoveEvent

• StartMove
• EndMove

• EnterRange
• ExitRange
• EnterFOV
• ExitFOV
• EnterLOS
• ExitLOS
• Detect
• Classify
• Identify

• NewTarget
• Fire



54

            The primary problem encountered when scheduling events is that Simkit

understands and handles SimEvents while BattleSim uses ModEvents. The solution to this

problem is the SimkitAdapter class. The SimkitAdapter takes a ModEvent, converts it to a

SimEvent, and sends that SimEvent to Simkit for scheduling. When the Simkit scheduler

determines that the event has occurred it sends it back to the SimkitAdapter. The adapter

converts the SimEvent back into a ModEvent and sends it to the originating component.

When the originating component receives the event it understands that the event is taking

place now and responds accordingly. Part of the originating component’s response is to

notify its listeners.

Figure 4.12: BattleSim Event Scheduling

E. SUMMARY

BattleSim provides STAFFSIM a discrete event simulation of vehicle to vehicle

battle. The entities in BattleSim are designed with a component architecture in order to

maximize component reuse and improve overall efficiency. The components within

BattleSim implement simple models for the real world interactions between combat vehicles.

These models can be replaced without discarding the component and coding a new

component. To introduce a new combat model the existing component is simply sub-classed.

Originating
Component

Simkit-
Adapter

Simkit
Scheduler

1 5 4 32

L L L

Listeners

1. Event is built and passed to the SimkitAdapter
2. The SimkitAdapter converts event and passes it to

the scheduler
3. The Scheduler schedules the event and passes it

back to the adapter when it occurs
4.  The adapter reconverts the event and passes it back

to the originating component
5. The originating component reacts to the event and

notifies its listeners

Legend



55

Sub-classing of components in this manner increases the potential for reuse while

simultaneously reducing the coding effort required to implement new models.

 Recalling the motivations for developing a new simulation discussed in chapters one

and two it is now time to evaluate STAFFSIM against those requirements. The primary tool

for evaluating STAFFSIM will be its ability to meet the specified requirements while war

gaming a typical scenario from the NTC. The following chapter will introduce such a

scenario and evaluate STAFFSIMs ability to function as required by army staffs in the field.



56



57

V. STAFFSIM IMPLEMENTATION

A.      INTRODUCTION

Now that STAFFSIM and BattleSim have been presented it is appropriate to evaluate

the simulation in terms of the requirements developed in earlier chapters. The baseline

requirements enumerated for STAFFSIM in chapters one through three are listed below.

• The simulation must be hosted on a single personal computer.

• Generation of new terrain models from NIMA products must be fast and easy.

• The time required to generate a new scenario must be less than thirty minutes.

• The simulation must run to completion in less than three hours.

• No specially trained support staff must be required to operate or maintain the

simulation.

• Once an upgrade to the simulation is developed and ready for fielding, specially

trained support staff must not be required to install it.

These requirements along with how well STAFFSIM supports the war gaming process form

the primary yardstick against which to evaluate the concept of simulation support for the war

game.

The best measure of STAFFSIM’s utility from the operational standpoint is to use it

as it was designed. In short, develop a scenario and determine STAFFSIM’s ability to assist a

staff in achieving better synchronization in the war game. Unfortunately, STAFFSIM does

not yet feature the full functionality required to do this. However, the base architecture is

complete and does allow trial scenarios to be run and evaluated. The remainder of this

chapter discusses one such scenario and STAFFSIM’s performance during the trial. The goal

of this thesis was to build a simulation that serves as a proof of concept for the operational

use of a simulation to support real-time decision-making. This chapter demonstrates a

simulation’s ability to improve staff synchronization during the war game. Thus, as a proof

of concept, STAFFSIM achieves its stated purpose. Additionally, STAFFSIM’s ability to

meet the requirements reviewed above is discussed.



58

B. SCENARIO DEVELOPMENT

As discussed earlier the National Training Center (NTC) is the army’s premier

maneuver training center. At the NTC, brigade staffs face the most challenging series of

scenarios possible short of actual combat. To evaluate STAFFSIM, a typical NTC scenario

has been replicated. Arguably the most demanding of the NTC scenarios is the full

Motorized Rifle Regiment (MRR) attack. In this scenario the rotational brigade is usually

allowed 48 hours to prepare a deliberate defense.  During the planning and preparation phase

the brigade staff conducts the staff planning process to include war gaming. As the brigade

completes planning and preparation, the OPFOR attacks in order to penetrate the defense and

destroy the defending friendly brigade. During the attack the OPFOR faithfully replicates the

doctrine, tactics and equipment of a full MRR.

The first step to war gaming the trail scenario is to initialize STAFFSIM with the

opposing orders of battle and courses of action.  The time required to initialize a scenario is

one of the primary performance criteria against which STAFFSIM is evaluated. In order to

fully understand what is required to initialize a scenario the opposing orders of battle and

courses of action are presented below.

1. Order of Battle

The opposing orders of battle define the units that compose the attacking OPFOR

regiment and defending friendly brigade. The units depicted in the order of battle diagrams

represent aggregations of combat vehicles. Although STAFFSIM models combat between

individual vehicles, the simulation map display depicts unit icons as shown in the order of

battle diagrams. Staff officers are trained to represent men and equipment in this manner.

Thus STAFFSIM’s user interface uses these icons because their meaning and function is

intuitively obvious to the target audience.

a. Opposing Orders of Battle

            The OPFOR regiment is organized for combat with four motorized rifle

battalions (MRB), each consisting of three motorized rifle companies (MRC) and an anti-

tank platoon. STAFFSIM supports company and platoon size units thus the MRCs are the

units seen in the simulation. The numbers underneath the icons in the diagrams are the unit

“slant” reports. The slant report is simply a shorthand method of annotating the strength of a



59

unit on a vehicle basis. For example, the slant of 40/116/9 for the MRR means that the MRR

is equipped with 40 tanks, 116 infantry-fighting vehicles and nine anti-tank vehicles. Figure

5.1 depicts the OPFOR order of battle.

Figure 5.1: OPFOR Order of Battle

            The friendly force is organized into two battalions, one with four companies,

the other with two. A seventh company is held as the brigade reserve. The friendly slant

figures represent tanks and infantry fighting vehicles only. Figure 5.2 presents the friendly

order of battle.

Figure 5.2:  Friendly Forces Order of Battle

X

... ... ...

0/13 0/13 10/4

... ......

10/4

0/4 4/0 4/0

14/0

0/4 4/0 4/0

20/36 10/18

44/ 54

... ... ...

4/9

0/4 0/4 4/0

...... ...

4/9

0/4 0/4 4/0

BDE Reserve

... ... ...

10 /29/3 10 /29/3 10 /29/310 /29/3

3/8/0 3/8/0 3/8/0 0/0/3

...

0/4/0 0/4/0 3/0/0

III            Regiment

II              Battalion

I               Company

...              Platoon

10/29/3     10 Tanks/ 29 APCs/ 3 AT vehicles

APC          Armored Personnel Carrier

AT            Anti - Tank

    Mechanized Infantry

    Armor

    Mechanized Anti-Tank

LEGEND

40/ 116/9



60

b. Order of Battle Input to STAFFSIM

            STAFFSIM provides two techniques for unit construction, file input or unit

construction with the graphic users interface (GUI). Either technique is accomplished using

SimBuilder.

            Unit construction boils down to the specification of a list of properties for the

unit being built. Table 5.1 lists the properties that must be supplied to build platoons and

companies. Although properties are specified for units, STAFFSIM takes these properties

and uses them to construct both the unit and its component vehicles. In order to build a

company the specified parameters must be supplied as well as up to five platoons.

SimBuilder  Unit Construction Properties

Platoon Company

• Force Identifier

• Designation

• Vehicle Type

• Number of Vehicles

• Position

• Formation

• Orientation

• Distance Between Vehicles

• Vehicle Rate of Fire

• Vehicle Field of View

• Vehicle Ammunition Load

• Force Identifier

• Designation

• Position

• Formation

• Distance Between Sub-Units

• Orientation

• Unit Type

Table 5.1: Unit Properties

            Figure 3.3 (page 28) depicts SimBuilder’s CompanyBuilder panel. The

company and platoon builder panels are simple point and click interfaces that allow rapid

specification of the desired units. While the SimBuilder GUI is intuitive and fast, importing

units by file can be much faster, once the unit file is built. Building unit files for scenario

initialization can take some time but is a one-time exercise. Once one unit file exists, others

can be rapidly created from the original in less than half the time required by the GUI

interface. A full discussion of specific times is presented in later sections.

2. Courses of Action

While planning the defense the brigade staff develops several potential courses of

action the enemy could pursue as well as several potential friendly courses of action. During

the war game each friendly course of action is fought against each enemy course of action.



61

The analysis during the war game is used to synchronize the friendly course of action and

ultimately leads to the selection of one friendly course of action. For the trial scenario a

single friendly and single enemy course of action are presented below.

a. OPFOR Course of Action

            The OPFOR course of action has the regiment attacking in advanced guard

formation. The leading elements are the combat reconnaissance patrols (CRP) followed by

the forward security element (FSE).  The FSE is a company sized unit and is followed by the

battalion sized advanced guard main body (AGMB).  The mission of these forces is to gain

intelligence, find or create potential weak spots in the enemy defense, or, if necessary, to fix

a portion of the defending enemy force. Following the AGMB is the regimental main body.

The main body seizes key terrain and attempts to defeat and penetrate the defending force to

allow the regimental second echelon to seize the regiment’s main objective.

            The course of action is depicted in Figure 5.3 and has the regiment placing its

main attack in the northern half of the zone. The FSE attacks in the south to both deceive the

friendly force as to where the main attack will occur and to fix friendly forces defending in

the south.  The AGMB attacks in the north attempting to find a weakness in the defense or

failing that, to create a weak point in the defense. The regimental main body follows the

AGMB to complete the destruction of the defenders in the north and to create a penetration

of the enemy defense. The regimental second echelon follows behind the main body with the

mission of securing the regimental objective. This course of action is one of several the

OPFOR could potentially pursue. For purposes of brevity it is the only COA war gamed in

this discussion.

b. Friendly Course of Action

                        The friendly force defends in sector with two task forces abreast and a tank

company in reserve. The brigade expects the brunt of the enemy attack to fall on only one

battalion task force. Each defending battalion is prepared to counterattack into the flank of

the MRR if it is not attacked.  The battalion in the north defends with three companies

forward and one in battalion reserve. The southern battalion defends with both of its

companies forward. Figure 5.4 shows the friendly course of action. The arrows labeled ‘A’

and ‘B’ in the figure depict the planned counterattack axis mentioned above. If the enemy

attacks in the north, the southern battalion will counterattack into the flank or vice versa. The



62

brigade reserve will be committed as a last resort.

Figure 5.3:  OPFOR Course of Action

Figure 5.4: Friendly Course of Action

2d Echelon

Main Body

FSE

AGMB
CRPs

B

A

X

X

II

Northern
Battalion

Southern
Battalion

BDE
Reserve



63

c. Course of Action Input to STAFFSIM

            STAFFSIM’s ExecutiveOfficer component allows users to rapidly assign

movement orders to any unit in the simulation. Units can be assigned orders on the fly

without even stopping the simulation. However, it is preferable to pause the simulation

before assigning orders to units.

            When a unit is assigned orders it immediately begins execution of the orders.

If a unit is currently executing orders and is assigned new orders, the current orders are

canceled in favor of the new ones. The ExecutiveOfficer allows staff officers to explore

courses of action by assigning units new orders as unanticipated situations arise. The ability

to stop the simulation, analyze options and assign new orders allows for rapid course of

action refinement and more complete analysis.

          
Figure 5.5: Assigning Unit Orders with ExecutiveOfficer

            Figure 5.5 depicts the ease with which units can be assigned orders using

ExecutiveOfficer. In the figure the user has selected CRP3 (highlighted in light red) and is

assigning move orders. The line extending south from the unit and then to the east is the

route the unit is being directed to follow. Route segments are added simply by clicking a

desired destination on the map. For each route segment, the user can set the speed for the

segment and the unit’s movement formation. These parameters are input via the Move Plan



64

dialog box shown in the lower right hand corner of the map. Once the user is satisfied with

the assigned orders ExecutiveOfficer is used to task the selected unit and the orders are

executed. Assigning orders to units in this manner is fast and efficient allowing user

interaction without substantially impacting the time required to run the simulation.

C. SCENARIO EXECUTION

Once the simulation has been initialized it is time to begin the war game. Figure 5.6

depicts the scenario as the first units of the MRR, the combat reconnaissance patrols, begin to

enter the defending battalions’ sectors.  As the scenario unfolds the forward security element

(FSE) attacks in the south followed by the Advanced Guard Main Body (AGMB) attacking

in the north.  As more and more enemy units enter the picture it becomes more and more

difficult for the staff officers to completely visualize the potential options open to both sides

not to mention conducting any type of analysis. To complicate the matter even further, as

opposing units come into direct fire range the staff begins to spend large amounts of precious

time debating outcomes. The debate about outcomes often eclipses any attempt at objective

analysis and thus sidetracks the war game from its true purpose. In order to illustrate how

STAFFSIM avoids unproductive debate and allows the staff to focus on synchronization; we

will focus on the efforts of the AGMB and the main body to penetrate the brigade’s defense.

     
Figure 5.6:  CRPs  Enter Sector and Make Contact

Combat Reconnaissance
Patrols (CRPs)



65

As the scenario continues the AGMB moves into sector and attacks the battalion in

the north. At this point in the typical war game the only visualization available to staff

officers is one enemy icon representing the AGMB next to two icons representing the

friendly companies. The icons themselves are typically oversized and usually obscure the

map. As the AGMB moves into direct fire range, the assembled staff officers must envision

the situation and think through time, space, unit capability relationships to eventually arrive

at an outcome for the engagement. While doing this they must also consider the impact of

combat multipliers such as artillery support, air support and obstacles. They must also

evaluate the utility of things such as intelligence collection plans, planned decision points and

reserve dispositions. Given the multitude of factors, the staff must consider and the complex

relationships that must be though through it is easy to see how a staff can be sidetracked from

true analysis. When the staff finally reaches a consensus about the outcome, in this case, say,

the AGMB is destroyed for the loss of one friendly company, the staff moves on to the next

critical event. No real analysis has occurred and synchronization has not been improved.

Figure 5.7:  AGMB Assaults



66

Figure 5.7 shows the visualization STAFFSIM provides to the staff and STAFFSIM

provides the outcomes. By providing an accurate visualization and showing within that

visualization the time, space, unit capability relationships, the staff can analyze the situation

and better synchronize the plan. From STAFFSIM’s visualization it is easy to observe that

the OPFOR has the opportunity to mass the AGMB against just the northern defending

company. Given the terrain in the vicinity of the defense the potential exists for an attacker to

achieve a significant local superiority. Furthermore, since the simulation provides the

outcomes the staff can easily evaluate the defending company’s ability to defeat the AGMB.

If the probability of success is to low the staff can modify the plan as necessary to ensure that

either the AGMB cannot mass against a single company or that if it does, the defending

company is properly resourced to succeed. Analysis such as this allows the staff to ensure

unit plans are feasible, properly synchronized and that all units have been assigned missions

within their capabilities.

Figure 5.8:  AGMB Penetrates the Defense

Returning to the typical war game, the AGMB has been destroyed at the cost of the

northernmost defending company. Given the loss of the northernmost company, the northern

battalion’s reserve company would probably be committed to reinforce the surviving

Remnants of AGMB penetrate
the defense and overrun the
northern -most company

1st battalion of main body
massing against remaining
defenders



67

company forward. The separation in time between the OPFOR’s AGMB and main body is

thirty minutes. The staff would normally judge that as sufficient time to move the reserve

forward and re-establish a two-company defense before the OPFOR’s main body arrives.

 It is human nature to abstract events into discrete occurrences separated by time.

However, to do so misrepresents the actual time space relationships in play on the battlefield.

The attack of the AGMB and loss of the northernmost company take place over time, not at a

discrete time. While that attack is occurring the main body is steadily closing the thirty-

minute gap. By the time the defending force realizes that it must reinforce the defense the

main body will have arrived and begun its attack. Thus the defenders plan is already

becoming desynchronized as the attackers can mass up to two battalions on a single

company. Worse still, the reserve company will arrive too late to influence the action and

will itself have to fight two enemy battalions. In essence, the attackers have created a

situation where they can mass against the defending companies one at a time, achieving

overwhelming force ratios in each instance.

A simulation can prevent the kind of errors in calculating time distance relationships

discussed above. Returning to STAFFSIM’s visualization of the scenario, Figure 5.8 shows

the scenario as the attack of the AGMB plays through and the main body arrives. It can

clearly be seen that as the attack of the AGMB culminates in the destruction of the

northernmost company the leading battalion of the main body has arrived and is massing

against the remaining defending company. Furthermore, the remnants of the AGMB, about

company size in strength, have penetrated the defense. STAFFSIM’s visualization clearly

shows that the enemy is succeeding in massing against single companies. Furthermore, the

time space relationships discussed above are shown, they do not have to be thought through

by the staff.  Figure 5.8 also reveals that as the reserve company moves forward to reinforce

the defense it can not possibly make it in time. Even if the reserve could make it in time it

would have to fight the remnants of the AGMB in order to assume the positions of the

destroyed company.

At this point the typical war game is usually hopelessly off track. Failure to

understand time space relationships and focusing on outcomes and not analysis has combined

to mislead the staff as to the feasibility of their course of action. By the time the two

battalions of the main body have completed their attack the staff typically concludes that the



68

two defending companies and the battalion reserve company have been destroyed and that a

unit the size of a motorized rifle company has penetrated the defense. The penetration of the

defense triggers a counterattack by the southern battalion and the brigade reserve that

successfully destroys the penetrating units and the regimental 2d echelon ending the war

game. The staff would usually conclude that the COA is feasible and could even recommend

to the commander that the brigade implement it.

       
Figure 5.9:  Main Body Penetrates the Defense

Figure 5.9 shows that a simulation can reveal a far different picture. The remnants of

the AGMB have swung to the south in order to provide flank protection for the main body of

the regiment. Although the AGMB is only company size in strength it can potentially disrupt

counterattacks from the south long enough for additional forces to arrive. The two battalions

of the main body are continuing the attack to the east. The northern battalion’s reserve

company is still alive but will almost certainly be wiped out by the advancing main body in

short order. The battalion defending in the south is counterattacking with one company and

the brigade reserve is enroute. The enemy’s second echelon battalion has not been committed

and is following closely behind the main body. Once again the defenders are desynchronized

and committing companies piecemeal in a failing effort to save a lost battle. The simulation

has revealed several flaws in the plan that must be corrected if it is to stand a reasonable

chance of success.

On the battlefield at the NTC, results generally resemble those depicted in the

simulation. Defending brigades never go into battle with a plan they believe has a poor

Remnants of AGMB orient
to south for flank protection

Battalion Reserve
Company

Main Body, 5 companies
strong continues attack to

the east



69

chance of succeeding. Yet almost invariably they lose, many times losing very badly. Why

then do brigades fail? As discussed in chapter two, invariably part of reason for failure is a

poorly synchronized plan. Brigades do not intentionally enter battle with poorly synchronized

plans, usually they expend a great deal of time and effort trying to ensure their plan is sound.

Unfortunately, given the mental complexity of war gaming most staffs fail to realize they are

doing a poor job of synchronizing their plan.

This scenario has demonstrated some of the pitfalls of war gaming that a simulation

can remedy. Time space relationships and their relevance to unit capabilities are very

difficult to fully think through. A simulation can visualize these relationships for a staff

providing them insight into what is and what is not possible in a given situation.  A

simulation can also remedy the natural tendency for staffs to discuss outcomes of battles, as

opposed to analyzing situations. The underlying combat models in a simulation provide

probable outcomes eliminating the need for any discussion of outcomes at all. This allows

the staff to focus their cognitive energies on analysis and synchronization. A simulation can

also give the staff the opportunity to experiment with several different solutions to a given

problem. Analysis of this nature not only gives the staff a better understanding of the

problem but can help to ensure workable solutions are selected for implementation.

This section has demonstrated the ability of simulation to assist the staff during war

gaming. STAFFSIM is a prototype of the kind of simulation needed. STAFFSIM’s set of

features is limited to vehicle on vehicle combat and thus many of the combat multipliers

found on modern battlefields have not been discussed. As combat multipliers are added to the

scenario the complexity of the analysis increases dramatically. The additional cognitive

workload that increased complexity places on the staff can be eased by simulation as well.

Simulation can allow staff officers to focus on finding and analyzing solutions to the current

tactical problem as opposed to wasting time thinking through details that are best presented

visually by a computer.  The following section addresses the ability of STAFFSIM to meet

the requirements for a simulation presented in earlier chapters.

D. STAFFSIM VERSUS SIMULATION REQUIRMENTS

The first requirement for the new simulation is that it can run on a personal computer

typically found in a brigade or battalion headquarters. STAFFSIM was developed on an Intel



70

based personal computer with one processor using Microsoft’s Windows 98 operating

system. The CPU clock speed was 400 megahertz with 128 MB of random access memory

(RAM). The memory footprint for the version run in the trial scenario was just more than 102

MB. A breakdown of the memory figure is useful in understanding what is actually required

by STAFFSIM to execute a scenario. Table 5.2 provides a memory breakdown for

STAFFSIM.

STAFFSIM MEMORY REQUIRMENTS

Program Component Memory Required

Source Code 1.56  megabytes

DTED Elevation Data 2.88 megabytes

1:500,000 Mapping 3.56 megabytes

1:250,000 Mapping 9.97 megabytes

1:100,000 Mapping 31.30 megabytes

1:50,000 Mapping 52.48 megabytes

Table 5.2: Memory Requirements

From a memory standpoint STAFFSIM’s requirements are not extensive and can be

easily supported by most modern PCs. In the event memory becomes an issue it is easy to

scale back STAFFSIM’s requirements. For example, in the trial scenario the 1:50,000

mapping was not used at all. Furthermore, for all map scales two to three times the map area

required was included in the mapping database. Efficient selection of the mapping required

for a given scenario could reduce the total memory required to less than 40 megabytes.

The second key issue concerning utilization of a PC is speed. When run on a 400

megahertz system the simulation was sluggish. Although the trial scenario runs in less than

three hours the slow pace renders STAFFSIM unusable for real-time analysis in its current

configuration. However, no reasoned approach to optimizing the code has been attempted.

Furthermore, STAFFSIM is only meant as a proof of concept. Given that the underlying

concepts are sound, a professionally coded simulation can almost certainly meet the

requirements for real-time use. In fact, STAFFSIM itself, once properly optimized stands the

chance of being responsive enough for real-time use.



71

The second criterion requires fast and easy generation of new terrain models for the

simulation. The terrain model used by STAFFSIM consists of two components, mapping and

terrain elevation data. STAFFSIM imports terrain elevation data directly from the Digital

Terrain Elevation Data (DTED) CD-ROMs produced by NIMA. The time required to read in

and initialize the elevation model for a one-degree DTED square is less than five minutes.

STAFFSIM uses DTED level one data. The mapping component of the terrain model is more

complicated.

STAFFSIM uses NIMA ARC Digitized Raster Graphics as the source for the

mapping used by Flora. STAFFSIM does not, however, physically generate the image files

used by Flora. A third party application is used to generate the actual mapping image files.

Generation of the mapping for the trial scenario required less than five hours.

Does a composite time of five hours to generate a complete terrain model from

scratch meet the requirement for fast and easy terrain generation? Recalling from chapter one

the time and expense required to generate new terrain models for some of the existing

simulations it is easy to see that STAFFSIM is faster and simpler. The real question is

however, is five hours fast enough? From an operational standpoint, it probably is. Even the

fastest deploying troops do not expect to see themselves thrust into combat any faster than

twenty-four hours, probably more. For forward-deployed troops, the area where they will

potentially fight is well known and thus the mapping can be prepared ahead of time. Thus,

five hours is almost certainly fast enough.

Scenario generation time is of critical importance for real time use. The staff planning

process has been shown to be an intense, time critical effort where every minute counts.

Scenario generation time in excess of thirty minutes cannot be supported. STAFFSIM has the

ability to generate scenarios in less than thirty minutes, when run on two machines. The time

required populating the simulation for the trial scenario using the GUI was thirty-eight

minutes or roughly two minutes per company. To create the same unit files from scratch

using a text editor such as Notepad required less than two hours. Importing units from text

files is the preferred method. The two-hour time requirement is a one-time expense. Once

one unit file exists, it is a simple matter of cut and paste to modify that file for a different

scenario. Depending on the amount of changes that must be made a new unit file can be



72

prepared in less than ten minutes. Once the unit file is imported, the simulation requires less

than three minutes to process it and build the required units.

The second piece of scenario initialization is input of the course of action into the

simulation. Using the ExecutiveOfficer GUI the course of action for the trail scenario

required twenty-eight minutes to input. Twenty-eight minutes is somewhat slow and must be

improved if real time use is to be feasible. The course of actions in the trial scenario required

extensive COA input for only one side. If the trail scenario had required extensive COA input

for both sides the thirty-minute limit would have been exceeded. However, if the friendly and

enemy COAs are built on separate computers, the files can then be merged and run on the

same machine. In this manner the thirty-minute limit can be achieved.

The final two criteria are that the simulation is easily upgraded and need no special

support staff. Hosting the simulation on a single PC eliminates many of the reasons support

staff are required for the currently fielded simulations.  STAFFSIM does not require any

hardware setup, running of cables, or specialized software installation and initialization.

STAFFSIMs user interface is designed to be intuitive to the target audience and does not

require any special training beyond reading a users manual. STAFFSIM and all supporting

software can be downloaded over a network and installed simply by following a one or two

page instruction sheet.

E. SUMMARY

Simulation support for real-time decision making is achievable using STAFFSIM

STAFFSIM can provide valuable support to the Army’s staff planning process, particularly

to course of action analysis.  It can successfully visualize a course of action for the staff,

relieve the staff from the difficult task of envisioning complex time, space, unit capability

relationships and provide probabilistic outcomes to engagements. The use of a simulation in

this manner can focus staffs on synchronizing courses of action, prevent time wasting debate

about outcomes and speed the course of action analysis process. The end result is a better

plan that is more fully synchronized and thus better positions a unit for success on the

battlefield.

As a prototype war game simulation, STAFFSIM has demonstrated the fundamental

utility of simulation to the war gaming process. It has been shown how a simulation supports



73

the war game by helping to achieve the results discussed above. STAFFSIM itself has several

shortcomings that prevent its immediate application by unit staffs. While STAFFSIM’s

current prototype implementation does not have the run-time performance needed for

operational use, it successfully demonstrates the feasibility of the underlying architecture.



74



75

VI. CONCLUSIONS

A. CONCLUSIONS

The use of a simulation in the war gaming step of the Military Decision-Making

Process can reduce the cognitive workload on staff officers in three important ways.

• The simulation visualizes the battlefield situation with respect to time for the staff

officers. Officers will no longer have to envision in their mind’s eye the precise

sequencing of events and spatial relationships between units.

• The simulation relieves the officers from the tedious and difficult task of mentally

thinking through complex time, space, unit capability relationships. The

simulation will demonstrate these relationships allowing officers to rapidly and

accurately assess what is and is not possible with respect to time, distance and

unit capabilities.

• The simulation provides the outcomes to all engagements. The combat models

embedded within the simulation determine the most probable outcome for unit on

unit engagements. Thus the subjective decisions arrived at in current war games

can be replaced with objective results based on tested and accepted combat

models.

These factors combine to significantly reduce the mental workload imposed on staff officers

during the war game. By reducing mental workload and replacing subjective outcome

decisions with objective combat models a simulation can allow the staff to focus on

analyzing the course of action. True course of action analysis as opposed to simple

discussion of outcomes will result in better synchronized battle plans which in turn will better

position friendly forces for success on the battlefield.

The latest generation of personal computers are now powerful enough and have

enough storage space to run high resolution combat models. The Army’s current set of high-

resolution combat simulations was designed well over a decade ago. At that time it was

unthinkable to use computer simulation in a real time decision making process. The

complexity of the systems required to run the simulations and the support staff required to do

so prevented their use in anything but fixed site simulation centers.



76

It is now possible to implement simulations using high-resolution combat models on

personal computers. If properly designed, these simulations can be used in real time decision

making. STAFFSIM is a proof of concept demonstrating how simulation can be used to

improve course of action analysis in the Military Decision-Making process. Use in real time

environments requires that the interface to the simulation be consistent with the training and

doctrine of the target audience.

B. FUTURE WORK

The work completed on STAFFSIM thus far constitutes the base architecture for the

simulation. STAFFSIM’s run-time performance needs to be enhanced by optimizing its code.

Furthermore, STAFFSIM models only vehicle on vehicle combat.  These factors combine to

suggest four areas where significant future work is required; implementation of acceptable

high-resolution combat models, addition of the all the Battlefield Operating Systems (BOS)

to the simulation, improvement of the systems performance, and experimentation in the field.

1. High Resolution Combat Models

The only combat model in STAFFSIM that is a standard army model is its use of  the

Janus line of sight algorithm. STAFFSIM is ready to have the basic army models plugged

into its components, as described in chapter four. For example, the Army’s Acquire model

for sensing and detection could be added to the BasicSensor component. Incorporation of

these models is important for the following reason. These models have been extensively

tested and are accepted as valid throughout both the tactical and simulations communities

within the Army. An attempt to use models other than currently accepted ones could result in

dismissal of the entire concept of simulation support for real time decision making based not

on its merits but on the use of untested models.

2. Battlefield Operating Systems

In its current state STAFFSIM does not model indirect fires, dismounted infantry,

close air support, chemical munitions, command and control, engineers or army aviation.

When the brigade staff analyzes a course of action all of these factors must be carefully

considered. For a simulation to be useful to a brigade staff it must model all the elements and



77

capabilities of the brigade. Thus, it is important for STAFFSIM to include these factors as

development continues.

3. System Performance

STAFFSIM’s speed of execution needs improvement. Real time use by a group of

assembled staff officers requires a crisp response from the user interface and speed of

execution from the simulation. In order to improve overall performance, STAFFSIM should

be profiled to determine where the bottlenecks exist. Once the bottlenecks have been

identified, general solutions that preserve the architecture can be implemented. Additionally,

the degree of complexity and multitude of independent tasks accomplished by the simulation

suggest that a threading model may help improve performance. The results of profiling the

simulation may suggest certain tasks or even components that are candidates for their own

thread. Performance improvements in the simulation should lead to a more responsive GUI

as code bottlenecks that prevent timely execution of the Java event thread are eliminated.

4. Field Experimentation

Once the improvements discussed above have been accomplished STAFFSIM must

be tested in a field environment. Only field tests can truly determine the feasibility of

simulation support for the Military Decision-Making Process.

C. SUMMARY

This thesis contends that the time has arrived for the use of simulation to support real

time decision-making. Currently, the Army uses a wide variety of simulations at the tactical

level to train troops on a multitude of tasks. As computers have become smaller and more

powerful it has become possible to operate complex simulations on personal computers.

Simulations run on PCs can deploy with tactical units and be used by unit staffs in the field.

This thesis presents a prototype of one such simulation designed for use by brigade staffs to

analyze courses of action. It has been demonstrated that unit staffs continually have difficulty

conducting course of action analysis resulting in less than optimal unit performance at the

Army’s combat training centers. This thesis has demonstrated that a complex, high-resolution



78

simulation can be run on a single PC and that such a simulation can most probably improve

staff performance of course of action analysis.



79

APPENDIX A: SELECTED IMPLEMENTATION CODE LISTINGS

Table of Contents for the Code Listings

I. BASE INTERFACES.........................................................................................................................80

A.  MOVER.JAVA .................................................................................................................................80
B.  SENSOR.JAVA.................................................................................................................................81
C.  WEAPON.JAVA ...............................................................................................................................83
D.  FIREDIRECTION.JAVA.....................................................................................................................84

II. INTERFACE IMPLEMENTATIONS.............................................................................................85

A.  BASICMOVER.JAVA .......................................................................................................................85
B.  BASICSENSOR.JAVA .......................................................................................................................92
C.  BASICWEAPON.JAVA......................................................................................................................97
D.  FIRECONTROL.JAVA.....................................................................................................................100



80

/**
 * Author: Bill Bohman
 * Originated: 30 Nov 98
 * Version: 0.0
 * Updates:
 * To Do:
**/

package StaffSim;

import modkit.*;
import modutil.spatial.*;

public interface Mover {

   public void setStartPos(Coor3D setValue);   // Position from which current move started or
   public Coor3D getStartPos();                // if not moving the current position

   public void setInitialPos(Coor3D initPos);  // Position at simulation time equal to zero
   public Coor3D getInitialPos();

   public void setEndPos(Coor3D newEndPos);    // Position at which current move will end

   public Coor3D getCurrentPos();              // Current Position at simtime when method called

   public Coor3D getVelocity();                // true velocity, direction and speed

   public double getCurrentSpeed();            // current speed, magnitude only, no direction
   public double getMaxSpeed();                // Movers maximum attainable speed (kph)

   public Coor3D getDirection();               // unit vector in direction of move, cartesian

   public double getAzimuth();                 // current direction referenced from grid north

   public void setFinalAzimuth(double value);  // azimuth mover will assume at the end of
   public double getFinalAzimuth();            // current move or if stationary, current azimuth

   public double getStartTime();               // time current move started

   public double getEndTime();                 // time current move will end

   public String getName();                    // retrieve the Mover's name

   public boolean isMoving();                  // is Mover currently moving

   public void stopMove(double delay);         // stop current move at current simtime + delay

   public double calcMoveDistance(double time, double speed);         // how far can be moved

   public void moveTo(Coor3D destination, double spd, double delay);  // results in scheduling
                                                                      // of a move event

   public void addModEventListener(ModEventListener eavsDropper);     // add a listener

   public void generateMoveEvent(String evtName, double delay, double speed, double prior);

} // end interface Mover



81

/**
 * Author: Bill Bohman
 * Originated: 30 Nov 98
 * Version: 0.0
 * Updates:
 * To Do:
**/

package StaffSim;

import modkit.*;
import modutil.spatial.*;
import java.util.*;

public interface Sensor {

   public ModComponent getParent();                       // component that owns this sensor

   public double getSensorMaxRange();                     // sensors maximum range in kilometers

   public void setSensorOrientation(double orientTo);     // center of sensors search area
   public double getSensorOrientation();                  // referenced to grid north, generates
                                                          // a sensor changed orientation event

   public void adjustSensorOrientation(double orientTo);  // changes sensor orientation w/o
                                                          // generating a sensor changed
                                                          // orientation event

   public double getSensorFieldOfView();                  // width of sensor's fov in radians

   public boolean inFieldOfView(Coor3D tgtVehPos);        // is target in the sensors area of
                                                          // search
   public boolean inFieldOfView(Coor3D tgtVehPos, Coor3D snsVehPos);

   public double getSensorLeftLimit();                    // angle from sensor to specified
   public double getSensorRightLimit();                   // limit in radians, referenced to
                                                          // grid north

   public Coor3D getSensorVelocity();                     // speed & direction sensor is moving
   public Coor3D getSensorLocation();                     // sensor's current location, these
                                                          // two properties are retrieved from
                                                          // the parent, they are not resident
                                                          // in the sensor

   public Vector getTrackList();                          // list of 'Target'(s) sensor is
   public void printTrackList();                          // is tracking

   public boolean isTracking(Vehicle tgtVeh);             // is specified vehicle being tracked
   public boolean isDetected(ModComponent target);

   public void setActive(boolean onOff);                  // is sensor searching or not
   public boolean getActive();

   public void addDetection(Target target);               // add Target to the tracklist
   public void removeDetection(Target target);            // remove traget from track list

   public double getTimeToDetection();                    // returns time in hours until the
   public double getTimeToClassify(Target tgt);           // specified event, these methods
   public double getTimeToIdentify(Target tgt);           // specify the detection algorithms
                                                          // used by the sensor



82

public void targetClassified(Target ghost);            // notification to the sensor that
   public void targetIdentified(Target ghost);            // these events have occurred
   public void targetChangedVelocity(Target ghost);
   public void targetMissed(Target ghost);

   public String getName();                               // get sensors name

   public void addModEventListener(ModEventListener eavsDropper);  // add a listener

} // end interface Sensor



83

/**
 * Author: Bill Bohman
 * Originated: 8 Jan 99
 * Version: 0.0
 * Updates:
 * To Do:
**/

package StaffSim;

import modkit.*;
import java.util.*;

public interface Weapon{

   public void setWeaponOrientation(double orientation);  // direction weapon is facing in
   public double getWeaponOrientation();                  // radians reference to grid north

   public double getWeaponLeftLimit();                    // angle to specified limit in
radians
   public double getWeaponRightLimit();

   public double getWeaponFieldOfView();                  // width of fov in radians

   public double getWeaponMaxRange();                     // weapon max range in kilometers

   public int getAmmoAvailable();                         // number of rounds on hand

   public String getWeaponName();                         // weapons name

   public ModComponent getParent();                       // component that owns the weapon

   public void shoot(Target targetToShoot, Sensor detectingSensor);  // tell weapon to fire
                                                                     // generates a 'Fire'
event

} // end interface Weapon



84

/**
 * Author: Bill Bohman
 * Originated: 14 Jun 99
 * Version: 0.0
 * Updates:
 * To Do:
**/

package StaffSim;

public interface FireDirection {

   public void engageTarget(Sensor detectingSensor, Target newTgt);  // determines if and when
   public void engageTarget(Sensor detectingSensor);                 // to engage a new target

   public Weapon selectFiringWeapon(Target target, double range);    // determines which weapon
                                                                     // to shoot at the target

} // end interface FireDirection



85

/**
 * Authors: Bill Bohman
 * Originated: 20 Oct 98
 * Version: 0.3
 * Updates: 1) 4 Nov 98  --> Converted from simkit.smd.coordinate to
 *                           modkit.modutil.spatial.Coor3D
 *          2) 7 Nov 98  --> included capability to move to several waypoints in sequence by
 *                           the inclusion of the 'path' private data memeber and by
 *                           overloading the moveTo() method.
 *          3) 14 Nov 98 --> swithched over to SimkitAdapter technique, discarded SimModEvent
 *                           and MyBasicModEvent()
 *          4) 30 Nov 98 --> made BasicMover implement the mover interface
 *          5) 7 Jan 99  --> added 'classification' data member
 *
 * To Do: 1) Fix Interrogator
 *        2) replace console i/o error checking in the constructor(), generateSimModEvent(),
 *           and setCurrentSpeed() with GUI dialog boxes
 *
 * Notes: 1) This Mover generates the following events, event priority is included in
 *           parenthesis. For priority low numbers = high priority
 *                        InitialPlacement (0.0)          EndMove  (3.0)
 *                        StartMove  (0.0)                EndSegment  (3.0)
 *                        StartSegemnt  (0.0)
 *        2) This Mover is a smooth linear mover, i.e. when this mover begins to move it
 *           instantaneously jumps to cruising speed (as set by user), moves the required
 *           distance and direction (also as set by user) then instaneously stops. This mover
 *           has no ability to accelerate or decelerate
 *        3) To use this class as the base for a more complex mover the following methods need
 *           to be over ridden, calcMoveTime(), getCurrentPos(), calcMoveDistance()
**/

package StaffSim;

import StaffSim.*;                  // for Class CoordConverter --> for getting elevations
import StaffSim.Shared.*;
import StaffSim.Events.*;
import StaffSim.Shared.Terrain.*;
import simkit.*;                    // for Schedule etc.
import modkit.*;                    // for BasicModComponent etc.
import modutil.spatial.*;           // for Coor3D
import thistle.flora.coord.*;
import java.util.*;                 // for Vector

public class BasicMover extends BasicModComponent implements Mover{

  private Coor3D startPos,    // position from which moves begin or position when stationary
                 endPos,      // position at end of a move
                 initialPos,  // first position in the simulation, used for reset
                 velocity;    // direction and speed of movement
  private double maxSpeed,    // maximum allowable speed
                 moveTime,    // time required to complete currrent move
                 startTime,   // time current move started, if stationary, time last move ended
                 endTime,     // time current move will end
                 finalAzimuth;// direction vehicle is to be pointing after last move
  private Vector path;        // sequence of waypoints that define a path of movement
  private static int identity;// for unique naming
  private static SimkitAdapter sa;

  static{
     sa = new SimkitAdapter();
     identity = 0;
  } // end static initializations

//---------------------------------------------------------------------------------------------
// Constructors
//---------------------------------------------------------------------------------------------

  public BasicMover(String name, Coor3D position, double mSpeed){
     super(new String(name + identity++ + " "), true);  // allow self introspection
     startPos = new Coor3D(position);              // set to user provided value
     initialPos = new Coor3D(position);            // set to user provided value



86

     endPos = new Coor3D(-1.0, -1.0, -1.0);        // set for consistency/error checking
     velocity = new Coor3D(0.0, 0.0, 0.0);         // start as not moving thus no velocity
     setMaxSpeed(mSpeed);                          // set to user supplied value
     setMoveTime(0d);                              // set for consistency/error checking
     setStartTime(0d);                             // set for consistency/error checking
     setEndTime(0d);                               // set for consistency/error checking
     setFinalAzimuth(0d);
     setParent(null);                              // if added to container, container sets
     setVerbose(false);
     path = new Vector();                          // allocate memory for the vector
     addModPropertySource(this);                   // property source for self
     addModEventListener(this);                    // listen to own events, thus will hear own
                                                   // scheduled events when they occur and can
                                                   // then take the appropriate action
     generateMoveEvent("InitialPlacement", 0.0, 0.0); // notify listeners of existence
  } // end constructor                                // and initial location

  public BasicMover(String name, Coor3D position, double mSpeed, double orient){
     this(name, position, mSpeed);
     setFinalAzimuth(orient);
  } // end constructor

//---------------------------------------------------------------------------------------------
// Properties
//---------------------------------------------------------------------------------------------

   public void setStartPos(Coor3D location){startPos = location;}           // StartPos
   public Coor3D getStartPos(){return new Coor3D(startPos);}

   public void setInitialPos(Coor3D location){                              // InitialPos
      initialPos = location;
      startPos = location;
   } // end setInitialPos

   public Coor3D getInitialPos(){return new Coor3D(initialPos);}

   public void setEndPos(Coor3D location){endPos = location;}               // EndPos
   public Coor3D getEndPos(){return new Coor3D(endPos);}

   public void setVelocity(Coor3D vel){velocity = vel;}                     // Velocity
   public Coor3D getVelocity(){return new Coor3D(velocity);}

   public void setMaxSpeed(double mSpeed){                                  // MaxSpeed
      mSpeed = checkLessThanZero(mSpeed, "maxSpeed");
      maxSpeed = mSpeed;
   } // end setMaxSpeed

   public double getMaxSpeed(){return maxSpeed;}

   public void setCurrentSpeed(double cSpeed){                              // CurrentSpeed
      if (isMoving()){
         cSpeed = checkSpeed(cSpeed);
         // retrieve current direction and multiply by new speed
         Coor3D direction = getDirection();
         setVelocity(new Coor3D(direction.getX() * cSpeed,
                                direction.getY() * cSpeed,
                                direction.getZ() * cSpeed));
         // recalculate move parameters
         moveTo(getEndPos(), cSpeed, 0.0);
      } // end if
      else{
         System.out.println(getName() + " cannot change speed because " +
                            getName() + " is not currently moving");
      } // end else
  } // end setCurrentSpeed

  public double getCurrentSpeed(){
     // current speed is embedded in velocity & must be extracted
     Coor3D temp = getVelocity();



87

     return Math.sqrt(temp.getX() * temp.getX() +
                      temp.getY() * temp.getY() +
                      temp.getZ() * temp.getZ());
  } // end getCurrentSpeed

  public Coor3D getDirection(){
     // current direction is embedded in velocity and must be extracted     // direction
     // retrieve X, Y and Z components of velocity
     double xComponent = endPos.getX() - startPos.getX();
     double yComponent = endPos.getY() - startPos.getY();
     double zComponent = endPos.getZ() - startPos.getZ();

     // calculate magnitude of velocity vector
     double magnitude = Math.sqrt(xComponent * xComponent +
                                  yComponent * yComponent +
                                  zComponent * zComponent);

     // calculate direction (in unit vector form) of velocity vector
     Coor3D direction = new Coor3D(xComponent / magnitude,
                                   yComponent / magnitude,
                                   zComponent / magnitude);
     return direction;
  } // end getDirection

  public double getAzimuth(){                                               // azimuth
     // azimuth is embedded in the velocity vector
     if (getVelocity().norm() == 0){
        return getFinalAzimuth();
     } // end if
     else {
        return Math.atan2(getVelocity().getX(), getVelocity().getY());
     } // end else
  } // end getAzimuth

  public void setFinalAzimuth(double facing){finalAzimuth = facing;}        // final azimuth
  public double getFinalAzimuth() {return finalAzimuth;}

  public Coor3D getCurrentPos(){                                            // CurrentPos
      // if not moving current position is StartPos
      if (!isMoving()){
         return startPos;
      } // end if
      // if we are moving calculate the time since move began, then
      // calculate distance covered since move began, then add distance
      // covered to start position to get current position
      else {
         Coor3D deltaMove = (Coor3D)velocity.scalarMul(Schedule.simTime() - startTime);
         Coor3D newPos = (Coor3D)startPos.add(deltaMove);
         FloraCoordinate currentPos = CoordConverter.getFloraPosition(newPos);
         newPos.setZ(ElevationManager.getElevation(currentPos.getLatLong()));
         return newPos;
      } // end else
   } // end getCurrentLocation

  public void setMoveTime(double time){                                     // MoveTime
     time = checkLessThanZero(time, "moveTime");
     moveTime = time;
  } // end setMoveTime

  public double getMoveTime(){return moveTime;}

  public void setStartTime(double time){                                    // StartTime
     time = checkTime(time, "startTime");
     startTime = time;
  } // end setStartTime

  public double getStartTime(){return startTime;}

  public void setEndTime(double time){                                      // EndTime
     time = checkTime(time, "endTime");
             endTime = time;



88

  } // end setEndTime

  public double getEndTime(){return endTime;}

  public boolean isMoving(){                                                // Moving
     // isMoving is embedded in velocity, if velocity is not zero then
     // isMoving is true, else false
     if (getVelocity().norm() != 0){
        return true;
     } // end if
     else return false;
  } // end is moving

  public void setPath(Vector newRoute){                                     // Path
     path.removeAllElements();
     path = newRoute;
  } // end setPath

  public Vector getPath(){return (Vector)path.clone();}

  // Move property allows a parent (ModContainer) to move by
  // setting the Move property of its Mover component
  public void setMove(Object[] params){
     Vector route = (Vector)params[0];
     Double temp1 = (Double)params[1];
     Double temp2 = (Double)params[2];
     double speed = temp1.doubleValue();
     double delay = temp2.doubleValue();
     moveTo(route, speed, delay);
  } // end setMove()

  public Vector getMove(){return (Vector)path.clone();}

//---------------------------------------------------------------------------------------------
// Movement Methods
//---------------------------------------------------------------------------------------------

   public double calcMoveTime(Coor3D start, Coor3D stop, double speed){
      double distance = start.distTo(stop);
      setMoveTime(distance / speed);
      return moveTime;
   } // end calcMoveTime

   public double calcMoveDistance(double time, double speed){
      return time * speed;
   } // end calcMoveDistance

   public void moveTo(Vector movePath, double spd, double delay){
      setPath(movePath);                                  // set the new route into path
      Coor3D nextWayPoint = (Coor3D)path.firstElement();  // get the 1st waypoint of the route
      path.removeElementAt(0);
      moveTo(nextWayPoint, spd, delay);                   // move to the 1st waypoint, see
   } // end moveTo                                        // handleStartMove for further moves

   public void moveTo(Coor3D destination, double spd, double delay){
      spd = checkSpeed(spd);                              // check for valid speed
      delay = checkLessThanZero(delay, "delay");          // check for valid delay

      double direction = Math.atan2(destination.getY() - getCurrentPos().getY(),
                                    destination.getX() - getCurrentPos().getX());

      // if vehicle is currently moving then there are several different cases to handle
      // --> Case 1) Vehicle is executing waypoints in it's path vector and has just completed
      //             an endSegment event and is beginning the next segment of it's route,
      //             therefore a startSegment must be scheduled
      // --> Case 2) Vehicle has been given an updated speed an/or destination in the middle
      //             of a move segment, therefore its current endMove event must be interrupted
      //             and a new endMove event must be scheduled

      if (isMoving()){



89

         setStartTime(Schedule.simTime());                        // start time = cur. time
         setStartPos(getCurrentPos());                            // start pos = cur. pos
         setEndPos(destination);                                  // endPos = destination
         setMoveTime(calcMoveTime(startPos, endPos, spd));        // set time to finish move
         setEndTime(Schedule.simTime() + moveTime);               // set time move will end
         setVelocity((Coor3D)getDirection().scalarMul(spd));      // set velocity
         // vehicle is already moving therefore start a new segment
         generateMoveEvent("StartSegment", 0.0, spd, 0.0);
         return;
      } // end if isMoving()

      // else if not already moving we need to start moving
      else {
         setStartTime(Schedule.simTime() + delay);            // set time move begins
         setStartPos(getCurrentPos());                        // start pos = cur. pos
         setEndPos(destination);                              // user sets destination
         setMoveTime(calcMoveTime(startPos, endPos, spd));    // set time to complete the move
         setEndTime(Schedule.simTime() + moveTime + delay);   // set time move will end
      } // end else                                           // in simkit
      generateMoveEvent("StartMove", delay, spd, 0.0); // generate 'StartMove' event
   } // end moveTo

   public void stopMove(double delay){
      if (isMoving()){
         generateMoveEvent("EndMove", 0.0, 0.0, 0.0);          // schedule EndMove event
      } // end if
   } // end stopMove()

//=============================================================================================
// Utility Methods
//=============================================================================================

   public void myDumpState(){
      System.out.print("\n" + getName() + " is at " + getCurrentPos());
      if (isMoving()){
         System.out.print(" moving to " + endPos + " at " + getCurrentSpeed() + " kph\n\n");
      } // end if
      System.out.println("\n\n");
   } // end dumpState

   public String toString() {return getName();}

   public double checkSpeed(double cSpeed){
      // ensure current speed is less than max speed and greater than zero
      while (cSpeed > maxSpeed || cSpeed < 0){
         if (cSpeed > maxSpeed){
            System.out.println("currentSpeed must be less than MaxSpeed");
            cSpeed = maxSpeed;
         } // end if
         if (cSpeed < 0){
            System.out.println("currentSpeed must be greater than zero");
            cSpeed = 0.0;
         } // end if
      } // end while
   return cSpeed;
   } // end checkSpeed

   public double checkLessThanZero(double numToCheck, String variableName){
      while(numToCheck < 0){
         numToCheck = Console.readDouble(variableName + "must be greater than " +
                                         "or equal to zero, enter a new value...");
      } // end while
      return numToCheck;
   } // end checkLessThanZero

   public double checkGreaterThanZero(double numToCheck, String variableName){
      while(numToCheck > 0){
         numToCheck = Console.readDouble(variableName + "must be less than " +
                                         "or equal to zero, enter a new value...");
      } // end while
      return numToCheck;
   } // end checkGreaterThanZero



90

   public double checkTime(double timeToCheck, String variableName){
      while(timeToCheck < Schedule.simTime()){
         System.out.println(variableName + "must be after current " +
                                          "simTime(), current simTime() is " +
                                          Schedule.simTime() + ", enter a new value");
         timeToCheck = Schedule.simTime();
      } // end while
      return timeToCheck;
   } // end checkTime

   public void printListeners(){
      for (Enumeration enum = listeners.elements(); enum.hasMoreElements();){
         ModEventListener ears = (ModEventListener)enum.nextElement();
         System.out.println(ears.toString());
      } // end for
   } // end printListeners

//---------------------------------------------------------------------------------------------
// Event Generators
//---------------------------------------------------------------------------------------------

   // for StartMove/StartSegment & EndMove/EndSegment Events
   public void generateMoveEvent(String eventName, double delay, double speed, double
                                 priority){
      Object[] params = new Object[8];
      params[0] = this;
      params[1] = new String("MoveEvent");
      params[2] = (getParent() == null ? this : getParent());
      params[3] = startPos;
      params[4] = endPos;
      params[5] = new Double(startTime);
      params[6] = new Double(endTime);
      params[7] = new Double(speed);
      sa.generateSimEvent(getName(), delay, params, priority, eventName);
   } // end generateSimModEvent

   // for Initial Placement Events
   public void generateMoveEvent(String eventName, double delay, double priority){
      Object[] params = new Object[8];
      params[0] = this;
      params[1] = new String("MoveEvent");
      params[2] = (getParent() == null ? this : getParent());
      params[3] = getCurrentPos();
      params[4] = getCurrentPos();
      params[5] = new Double(Schedule.simTime());
      params[6] = new Double(Schedule.simTime());
      params[7] = new Double(getCurrentSpeed());
      sa.generateSimEvent(getName(), delay, params, priority, eventName);
   } // end generateSimModEvent

//---------------------------------------------------------------------------------------------
// Event Handlers
//---------------------------------------------------------------------------------------------

   public void handleInitialPlacement(MoveEvent evt){
      if (((BasicMover)evt.getSource()).equals(this)){                 // if I generated this
         setStartPos(getCurrentPos());                                 // event, update my
      } // end if                                                      // starting position
   } // end handleInitialPlacement

   public void handleStartMove(MoveEvent evt){
      if (((BasicMover)evt.getSource()).equals(this)){                 // if I started moving
         Coor3D direct = getDirection();
         double spd = evt.getSpeed();                                  // unwrap speed for move
         setVelocity((Coor3D)direct.scalarMul(spd));                   // set velocity vector
         setFinalAzimuth(getAzimuth());
         if(path.isEmpty()){                                           // if this is last leg...
            generateMoveEvent("EndMove", moveTime, spd, 3.0);          // schedule EndMove event
         } // end if



91

         else {                                                        // else...
            generateMoveEvent("EndSegment", moveTime, spd, 3.0);       // schedule endSegment
         } // end else
      } // end if
   } // end handleStartMove

   public void handleEndSegment(MoveEvent evt){
      if (evt.getSource().equals(this)){
         setStartPos(endPos);
         Coor3D nextWayPoint = (Coor3D)path.firstElement();
         path.removeElementAt(0);
         moveTo(nextWayPoint, getCurrentSpeed(), 0.0);
      } // end if
   } // end handleEndSegment

   public void handleStartSegment(MoveEvent evt){
      if (evt.getSource().equals(this)){
         Coor3D direct = getDirection();
         double spd = evt.getSpeed();                                  // unwrap the speed
         setVelocity((Coor3D)direct.scalarMul(spd));                   // set velocity vector
         setFinalAzimuth(getAzimuth());
         if(path.isEmpty()){                                           // if this is last leg...
            generateMoveEvent("EndMove", moveTime, spd,  3.0);         // schedule EndMove event
         } // end if
         else {                                                        // else...  schedule
            generateMoveEvent("EndSegment", moveTime,spd,  3.0);       // endSegment evt
         } // end else
      } // end if
   } // end handleStartSegment

   public void handleEndMove(MoveEvent evt){
      if (evt.getSource().equals(this)){            // if I finished moving
         Coor3D direct = getDirection();
         setFinalAzimuth(getAzimuth());
         setStartPos(endPos);                       // update startPos, startPos for next move
         setVelocity(new Coor3D(0.0, 0.0, 0.0));    // set velocity to zero
         setStartTime(Schedule.simTime());          // earliest possible time another move can
         setMoveTime(0.0);                          // start is the time the last move ended
         setEndTime(Schedule.simTime());
      } // end if
   } // end handleEndMove

} // end class BasicMover



92

/**
 * Authors: Arnold Buss & Bill Bohman
 * Originated: 7 Nov 98
 * Version: 0.1
 * Updates: 22 Nov 98 --> removed sensorLocation and sensorVelocity properties because those
 *                        properties are avialable in the parent property of BasicModComponent
 *                        which this class extends
 *          30 Nov 98 --> made BasicSensor implement the Sensor interface
 *
 * To Do: 1)
 *
 * Notes: 1) This sensor is a basic cookie cutter sensor. When a target enters the sensors
 *           range the mediator checks for and if necessary schedules Enter/Exit LOS events.
 *           When a target enters LOS time to detection is assumed to exponentially distributed
 *           with a mean time to detect of 5 mins or as set by the user.
 *        2) To use this class as the base for a more sophisticated sensor the following
 *           methods must be over written; getTimeToDetection(), getTimeToClassify(),
 *           getTimeToIdentify(), getRightLimit(), getLeftLimit, inFieldOfView()
**/

package StaffSim;

import StaffSim.Events.*;
import StaffSim.Shared.*;
import simkit.data.*;              // for Class RandomStream
import modkit.*;                   // for class BasicModComponent etc
import modutil.spatial.*;          // for class Coor3D
import java.util.*;                // for class Vector
import java.lang.reflect.*;        // for class Method

public class BasicSensor extends BasicModComponent implements Sensor{

   private double sensorMaxRange,     // maximum range at which a sensor can detect a target
                  sensorOrientation,  // direction the sensor is currently looking
                  sensorFieldOfView,  // width of the sensors field of view
                  sensorLeftLimit,    // left bound of sensors assigned sector of search
                  sensorRightLimit;   // right bound of sensors assigned sector of search
   private Vector trackList;          // list of all targets currently being tracked
   private String sensorName;         // identifying name of the sensor
   private boolean active,            // true = sensor is active, false = sensor is inactive
                   debug;             // for debugging, if true activates tracing
   private double meanTimeToDetect,   // mean time to detection after entering LOS
                  meanTimeToClassify, // mean time to classify after detection occurs
                  meanTimeToIdentify; // mean time to identify afetr classification occurs
   private static RandomStream rs;    // for exponential times to detection
   private static int identity;       // for unique naming

   static{
      rs = new RandomStream(RandomStream.STREAM_1);
      identity = 0;
   } // end static initializations

//=============================================================================================
// Constructors
//=============================================================================================

   public BasicSensor(double mRng, String id, boolean onOff, double orient, double fov) {
      this(mRng, id, orient, fov, onOff, 1.0/4.0, 1.0/8.0, 1.0/12.0);
   } // end constructor

   public BasicSensor(double mRng, String id, double orient, double fov) {
      this(mRng, id, orient, fov, true, 1.0/6.0, 1.0/12.0, 1.0/18.0);
   } // end constructor

   public BasicSensor(double mRng, String id, double orient, double fov, boolean onOff,
                      double mttd, double mttc, double mtti){
      super(new String(id + identity++ + " "), true);// allow self introspection
      setSensorMaxRange(mRng);                       // set user supplied values
      setSensorOrientation(orient);



93

      setSensorFieldOfView(fov);
      trackList = new Vector();                      // allocate memory
      setSensorName(id);                             // set user supplied values
      setActive(onOff);                              // set user supplied value
      debug = false;
      setMeanTimeToDetect(mttd);
      setMeanTimeToClassify(mttc);
      setMeanTimeToIdentify(mtti);
      addModEventListener(this);                     // listen to own events
   } // end constructor

//=============================================================================================
// Properties
//=============================================================================================

   public void setSensorMaxRange(double mRng) {                             // SensorMaxRange
      sensorMaxRange = checkGreaterThanZero(mRng, "sensorMaxRange");
   } // end set maxRange

   public double getSensorMaxRange() {return sensorMaxRange;}

   public void setSensorOrientation(double facing){                         // SensorOrientation
      sensorOrientation = facing;
      //System.out.println("Setting " + this + " orientation to " + facing);
      setSensorLeftLimit(facing - getSensorFieldOfView() / 2);
      setSensorRightLimit(facing + getSensorFieldOfView() / 2);
      generateEnterExitEvent("ChangedFieldOfView");
   } // end setOrientation()

   public void adjustSensorOrientation(double facing){
      sensorOrientation = facing;
      setSensorLeftLimit(facing - getSensorFieldOfView() / 2);
      setSensorRightLimit(facing + getSensorFieldOfView() / 2);
   } // end setOrientation()

   public double getSensorOrientation(){return sensorOrientation;}

   public void setSensorFieldOfView(double fov){                            // SensorFieldOfView
      sensorFieldOfView = fov;
      setSensorLeftLimit(getSensorOrientation() - fov / 2);
      setSensorRightLimit(getSensorOrientation() + fov / 2);
      generateEnterExitEvent("ChangedFieldOfView");
   } // getOrientation()

   public double getSensorFieldOfView(){return sensorFieldOfView;}

   private void setSensorLeftLimit(double ll){                              // SensorLeftLimit
      sensorLeftLimit = ll;
   } // end setSensorLeftLimit

   public double getSensorLeftLimit(){return sensorLeftLimit;}

   private void setSensorRightLimit(double rl){                             // SensorRighLimit
      sensorRightLimit = rl;
   } // end setSensorRightLimit

   public double getSensorRightLimit(){return sensorRightLimit;}

   public Coor3D getSensorLocation(){                                       // Location
      if (getParent() != null){
         return (Coor3D)getParent().getProperty("CurrentPos");
      } // end if
      return null;
   } // enf getSensorLocation

   public Coor3D getSensorVelocity() {                                      // Velocity
      if (getParent() != null){
         return (Coor3D)getParent().getProperty("Velocity");
      } // end if
      return null;
   } // end getSensorVelocity



94

public void setTrackList(Vector newList) {trackList = newList;}          // TrackList

   public Vector getTrackList() {return trackList;}

   public void setSensorName(String id) {sensorName = id;}                  // SensorName

   public String getSensorName() {return sensorName;}

   public void setActive(boolean onOff){                                    // Active
       if (active == false && onOff == true){
          generateGenericModEvent("ActivateSensor");
       } else if (active == true && onOff == false){
          generateGenericModEvent("DeactivateSensor");
       } // end else if
       active = onOff;
   } // end setActive

   public boolean getActive() {return active;}

   public void setMeanTimeToDetect(double mtd){meanTimeToDetect = mtd;}
   public double getMeanTimeToDetect(){return meanTimeToDetect;}

   public void setMeanTimeToClassify(double mtc){meanTimeToClassify = mtc;}
   public double getMeanTimeToClassify(){return meanTimeToClassify;}

   public void setMeanTimeToIdentify(double mti){meanTimeToIdentify = mti;}
   public double getMeanTimeToIdentify(){return meanTimeToIdentify;}

//=============================================================================================
// Utility Methods
//=============================================================================================

   public double checkGreaterThanZero(double numToCheck, String paramName){
      while(numToCheck < 0){
         numToCheck = Console.readDouble(paramName + " must be greater than zero, " +
                                         "enter a valid number...");
      } // end while
      return numToCheck;
   } // end checkGreaterThanZero

   public boolean isTracking(Vehicle tgtVeh){
      for (Enumeration enum = trackList.elements(); enum.hasMoreElements();){
         Target checkVeh = (Target)enum.nextElement();
         if (checkVeh.getName().equals(new String("Ghost-" + tgtVeh.getName()))){
            return true;
         } // end if
      } // end for
      return false;
   } // end isTracking()

   public void printTrackList(){
      System.out.println("Sensor " + getName() + " is tracking...");
      for (Enumeration enum = trackList.elements(); enum.hasMoreElements();){
         Target tempTarget = (Target)enum.nextElement();
         System.out.println("   " + tempTarget.getName());
      } // end for
   } // end printTrackList()

   public String toString() {return getName();}

   public void trace(String arg){System.out.println(arg);}

   public boolean inFieldOfView(Coor3D tgtVehPos){

      Coor3D snsVehPos = (Coor3D)(getParent().getProperty("CurrentPos"));
      double angle = Math.atan2(tgtVehPos.getX() - snsVehPos.getX(),
                                tgtVehPos.getY() - snsVehPos.getY());
      if (angle >= sensorLeftLimit && angle <= sensorRightLimit){return true;}
      if (angle >= -sensorRightLimit && angle <= -sensorLeftLimit){return true;}

      return false;
   } // end inFieldOfView()



95

public boolean inFieldOfView(Coor3D tgtVehPos, Coor3D snsVehPos){
      if (debug) {trace("entering M1GunnersPrimarySight.inFieldOfView() w/args... " +
                        "\n   tgtVehPos = " + tgtVehPos + "\n   snsVehPos = " + snsVehPos);}

      double angle = Math.atan2(tgtVehPos.getX() - snsVehPos.getX(),
                                tgtVehPos.getY() - snsVehPos.getY());
      if (angle >= sensorLeftLimit && angle <= sensorRightLimit){return true;}
      if (angle >= -sensorRightLimit && angle <= -sensorLeftLimit){return true;}

      if (debug) {trace("returning false");}
      return false;
   } // end inFieldOfView()

//=============================================================================================
// Event Generators
//=============================================================================================

   public void generateGenericModEvent(String eventName){
      GenericModEvent newEvent = new GenericModEvent(this, eventName);
      notifyListeners(newEvent);
   } // end generateGenericModEvent

   public void generateEngageEvent(String eventName, Target tgt){
      EngageEvent newEvent = new EngageEvent(this, eventName, (Vehicle)getParent(), this, tgt);
      notifyListeners(newEvent);
   } // end generateGenericModEvent()

   public void generateEnterExitEvent(String eventName){
      if (debug){trace("entering BasicSensor.generateEnterExitEvent()");}
      EnterExitEvent newEvent = new EnterExitEvent(this, eventName, this, (Vehicle)getParent());
      notifyListeners(newEvent);
      if (debug){trace("exiting BasicSensor.generateEnterExitEvent()");}
   } // end generateEnterExitEvent
//=============================================================================================
// Event Handlers
//=============================================================================================

   public void handleActivateSensor(ModEvent evt){
      trackList.removeAllElements();                  // ensure trackList is clear of all old
   } // end handleActivateSensor                      // tracks

   public void handleDeactivateSensor(ModEvent evt){
      trackList.removeAllElements();
   } // end handleDeactivateSensor

//=============================================================================================
// Detection Methods
//=============================================================================================

   public double getTimeToDetection(){
      return rs.exponential(meanTimeToDetect);
   } // end getTimeToDetect

   public double getTimeToClassify(Target tgt){
      return rs.exponential(meanTimeToClassify);
   } // end getTimeToDetect

   public double getTimeToIdentify(Target tgt){
      return rs.exponential(meanTimeToIdentify);
   } // end getTimeToDetect

   public void addDetection(Target target){
      if (!trackList.contains(target)){
         trackList.addElement(target);
         generateEngageEvent("NewTarget", target);
      } // end if
      else {
         System.out.println("Target " + target + " is already being tracked");
      } // end else
       } // end addDetection



96

public void removeDetection(Target target){
      if (trackList.contains(target)){
         trackList.removeElement(target);
      } // end if
      else {
         System.out.println("Sensor " + this + " is not tracking Target " + target);
      } // end else
   } // end removeDetection

   public boolean isDetected(ModComponent target){
      return trackList.contains(target);
   } // end isDetected

   public void targetChangedVelocity(Target ghost){
      generateEngageEvent("NewTarget", ghost);
   } // end targetChangedVelocity()

   public void targetMissed(Target ghost){
      generateEngageEvent("NewTarget", ghost);
   } // end targetMissed

   public void targetClassified(Target ghost){
      if (ghost.getDetectionStatus() == 3){
         generateEngageEvent("NewTarget", ghost);
      } // end if
   } // end targetClassified

   public void targetIdentified(Target ghost){
      if (ghost.getDetectionStatus() == 4){
         generateEngageEvent("NewTarget", ghost);
      } // end if
   } // end targetIdentified

} // end class BasicSensor



97

/**
 * Author: Bill Bohman
 * Originated: 8 Jan 99
 * Version: 0.0
 * Updates:
 * To Do:
**/

package StaffSim;

import StaffSim.Shared.*;
import simkit.*;
import modkit.*;
import modutil.spatial.*;
import java.util.*;

public class BasicWeapon extends BasicModComponent implements Weapon {

   private double weaponMaxRange;             // maximum engagement range for this weapon
   private int maximumBasicLoad,              // max # of rounds typically carried on vehicle
               ammoAvailable;                 // number of rounds currently on hand
   private double nextEngagementTime,         // is vehicle engaging at this time
                  timeToFire,                 // time to complete one engagement
                  weaponOrientation,          // azimuth of weapons center of sector
                  weaponFieldOfView,          // angular width of weapons sector of fire
                  weaponLeftLimit,            // radians, left limit of assigned sector
                  weaponRightLimit,           // radians, right limit of assigned sector
                  maxRateOfFire,              // rounds/minute
                  rateOfFire,                 // rounds/minute
                  roundsPerBurst;             // number of rounds expended each time wpn fired
   private String weaponName;                 // name of weapon for indexing kill tables
   private static int identity;               // for unique naming
   private static SimkitAdapter sa;           // for generating scheduled events
   static {
      sa = new SimkitAdapter();
      identity = 0;
   } // end static initializations

//==============================================================================================
// Constructors
//==============================================================================================

   public BasicWeapon(String name, double maxRng, int maxLoad, int load, double maxFire,
                      double typicalFire, double orient, double fov, String wpnName,
                      double rdsPerBurst){
      super(name, true);
      setWeaponMaxRange(maxRng);
      setMaxBasicLoad(maxLoad);
      setAmmoAvailable(load);
      setMaxRateOfFire(maxFire * 60.0);           // user inputs in rounds/minute, must convert
      setRateOfFire(typicalFire * 60.0);          // to rounds per hour
      setNextEngagementTime(0.0);
      setTimeToFire(1.0 / getRateOfFire());
      setWeaponOrientation(orient);
      setWeaponFieldOfView(fov);
      setWeaponName(wpnName);
      setRoundsPerBurst(rdsPerBurst);
      addModEventListener(this);
   } // end constructor

   public BasicWeapon(String wpnName){
      this(new String(" BasicWeapon-" + identity++ + " " ), 3.5, 40, 40, 360.0, 3.0, 0.0,
           Math.PI / 2, wpnName, 1.0);

      // name --> BasicWeapon-###
      // weaponMaxRange --> default to 3.5 kilometers
      // maximumBasicLoad --> default to 40 rounds, actual M1A1 capacity
      // ammoAvailable --> default to a full load
      // maxRateOfFire --> 360 rounds/hour = 6 rounds/minute
      // rateOfFire -> 180 rounds/hour = 3 rounds/minute
        } // end constructor



98

   public BasicWeapon(String name, int load, int rateOfFire, String wpnName){

      // note: rate of fire must be input in rounds per minute, is converted to rounds/hour
      this(name, 4.0, 40, load, 360, rateOfFire * 60, 0.0, Math.PI / 2, wpnName, 1.0);
   } // end constructor

   // this is constructor called by Vehicle Builder
   public BasicWeapon(String wpnName, int rateOfFire, int load, double maxRange,
                      double roundsBurst, double orientation, double fieldOfView){

      // note: rate of fire must be input in rounds per minute, is converted to rounds/hour
      this(new String("BscWpn-" + identity++), maxRange, 10000, load, rateOfFire * 60,
           rateOfFire * 60, orientation, fieldOfView, wpnName, roundsBurst);
   } // end constructor

   public BasicWeapon(String name, int rateOfFire, String wpnName, double maxRange,
                      double roundsBurst){

      // Note: rate of fire must be sent in in rounds per minute, is converted to rounds/hour
      this(name, maxRange, 40, 40, 360, rateOfFire * 60, 0.0, Math.PI / 2, wpnName,
           roundsBurst);
   } // end constructor

   public BasicWeapon(double maxRng, double orient, double fov, String wpnName){
      this(new String("BasicWeapon-" + identity++), maxRng, 40, 40, 360, 3, orient, fov,
           wpnName, 1.0);
   } // end constructor

//=============================================================================================
// Properties
//=============================================================================================

   public void setWeaponMaxRange(double maxRng) {weaponMaxRange = maxRng;}
   public double getWeaponMaxRange() {return weaponMaxRange;}

   public void setMaxBasicLoad(int maxLoad) {maximumBasicLoad = maxLoad;}
   public int getMaxBasicLoad() {return maximumBasicLoad;}

   public void setAmmoAvailable(int ammo) {ammoAvailable = ammo;}
   public int getAmmoAvailable() {return ammoAvailable;}

   public void setMaxRateOfFire(double maxRof) {maxRateOfFire = maxRof;}
   public double getMaxRateOfFire() {return maxRateOfFire;}

   public void setRateOfFire(double rof) {
      if (rateOfFire <= maxRateOfFire){
         rateOfFire = rof;
      } // end if
      else {
         rateOfFire = Console.readInt("Attempted to set rateOfFire > maxRateOfFire " +
                                      " re-enter rateOfFire here --> ");
      } // end else
   } // end setRateOfFire()

   public double getRateOfFire() {return rateOfFire;}

   public void setNextEngagementTime(double nextTime) {nextEngagementTime = nextTime;}
   public double getNextEngagementTime() {return nextEngagementTime;}

   public void setTimeToFire(double setValue) {timeToFire = setValue;}
   public double getTimeToFire() {return timeToFire;}

   public void setWeaponOrientation(double orient) {
      weaponOrientation = orient;
      setWeaponLeftLimit(orient - getWeaponFieldOfView() / 2);
      setWeaponRightLimit(orient + getWeaponFieldOfView() / 2);
   } // end setWeaponOrientation()

   public double getWeaponOrientation() {return weaponOrientation;}



99

   public void setWeaponFieldOfView(double fov) {
      weaponFieldOfView = fov;
      setWeaponLeftLimit(getWeaponOrientation() - fov / 2);
      setWeaponRightLimit(getWeaponOrientation() + fov / 2);
   } // end setWeaponOrientation()

   public double getWeaponFieldOfView() {return weaponFieldOfView;}

   public void setWeaponLeftLimit(double leftLim) {weaponLeftLimit = leftLim;}
   public double getWeaponLeftLimit() {return weaponLeftLimit;}

   public void setWeaponRightLimit(double rightLim) {weaponRightLimit = rightLim;}
   public double getWeaponRightLimit() {return weaponRightLimit;}

   public void setWeaponName(String wpnName) {weaponName = wpnName;}
   public String getWeaponName() {return weaponName;}

   public void setRoundsPerBurst(double rpb) {roundsPerBurst = rpb;}
   public double getRoundsPerBurst() {return roundsPerBurst;}

//==============================================================================================
// Utility Methods
//==============================================================================================

   public String toString() {return getName();}

//==============================================================================================
// Event generaters
//==============================================================================================

   public void generateEngageEvent(String sourceName, double delay, double prior,
                                   String eventName, Sensor detectingSensor, Target ghost){
      Object[] eventParameters = new Object[6];       // build event object array
      eventParameters[0] = this;
      eventParameters[1] = new String("EngageEvent");
      eventParameters[2] = getParent();
      eventParameters[3] = detectingSensor;
      eventParameters[4] = this;
      eventParameters[5] = ghost;
      sa.generateSimEvent(getName(), delay, eventParameters, 0.0, "Fire");
   } // end generateEngageEvent

   public void shoot(Target tgt, Sensor detectingSensor){
      double delay;
      if (Schedule.simTime() >= nextEngagementTime){
         delay = timeToFire;
         setNextEngagementTime(Schedule.simTime() + timeToFire);
          if (ammoAvailable > 0){
            generateEngageEvent(getName(), delay, 0.0, "Fire", detectingSensor, tgt);
            ammoAvailable -= roundsPerBurst;
         } // end if
         else {
            System.out.println(this + " is out of ammunition");
         } // end if
      } // end if
      else {
         delay = nextEngagementTime - Schedule.simTime() + timeToFire;
         setNextEngagementTime(Schedule.simTime() + delay);
          if (ammoAvailable > 0){
            generateEngageEvent(getName(), delay, 0.0, "Fire", detectingSensor, tgt);
            ammoAvailable -= roundsPerBurst;
         } // end if
         else {
            System.out.println(this + " is out of ammunition");
         } // end else
      } // end else
   } // end shoot()

} // end class BasicWeapon



100

/**
 * Author: Bill Bohman
 * Originated: 8 Jan 99
 * Version: 0.0
 * Updates:
 * To Do:
**/

package StaffSim;

import StaffSim.Shared.*;
import modkit.*;
import modutil.spatial.*;
import java.util.*;

public class FireControl extends BasicModComponent implements FireDirection {

   private WeaponControl wpnCtrl;             // current weapons control status
   private TargetPriority tgtPriority;        // current target priorities
   private TreeSet masterTargetList;          // prioritized list of targets to engage
   private Vector targetsOnMasterTargetList;  // un-prioritized list of targets on MTL
   private static int identity;               // for unique naming
   private static SimkitAdapter sa;           // for scheduling events

   static{sa = new SimkitAdapter();
          identity = 0;
   } // end static initializations

//=============================================================================================
// Constructors
//=============================================================================================

   public FireControl(String name){
      super(new String(name + "-" + identity++), true);
      wpnCtrl = new WeaponControl(0, 2, 2);   // wcsA = 1, wcsB = 2, triggerLine = 2.0
      tgtPriority = new TargetPriority(name);
      masterTargetList = new TreeSet(new TargetComparator());
      targetsOnMasterTargetList = new Vector();
      wpnCtrl.addModEventListener(this);
   } // end constructor

   public FireControl(){
      super(new String("FC-" + identity++), true);
      wpnCtrl = new WeaponControl(0, 2, 2);   // wcsA = 0, wcsB = 2, triggerLine = 2.0
      tgtPriority = new TargetPriority(getName());
      masterTargetList = new TreeSet(new TargetComparator());
      targetsOnMasterTargetList = new Vector();
      wpnCtrl.addModEventListener(this);
   } // end constructor

//=============================================================================================
// Properties
//=============================================================================================

   public void setWpnCtrl(WeaponControl setObj){wpnCtrl = setObj;}
   public WeaponControl getWpnCtrl(){return wpnCtrl;}

   public void setTgtPriority(TargetPriority setObj){tgtPriority = setObj;}
   public TargetPriority getTgtPriority(){return tgtPriority;}

   protected void setMasterTargetList(TreeSet tgtList){masterTargetList = tgtList;}
   public TreeSet getMasterTargetList(){return masterTargetList;}

   public void setTargetsOnMasterTargetList(Vector tgts){targetsOnMasterTargetList = tgts;}
   public Vector getTargetsOnMasterTargetList(){return targetsOnMasterTargetList;}



101

//==============================================================================================
// Event Generators
//==============================================================================================

   public void generateEngageEvent(String eventName, double delay, Target tgt, Sensor ds,
                                   Weapon firingWeapon){
       Object[] evtParams = new Object[6];
      evtParams[0] = this;
      evtParams[1] = "EngageEvent";
      evtParams[2] = getParent();
      evtParams[3] = ds;
      evtParams[4] = firingWeapon;
      evtParams[5] = tgt;
      sa.interruptAll("NewTarget", evtParams);
      sa.generateSimEvent(getName(), delay, evtParams, 0.0, eventName);
   } // end generateScheduledEvent

//==============================================================================================
// Fire Control Methods
//==============================================================================================

   public void engageTarget(Sensor detectingSensor, Target newTgt){
      Coor3D wpnPos = (Coor3D)(getParent().getProperty("CurrentPos")); // retrieve own position
      double range = wpnPos.distTo(newTgt.getCurrentPos());            // and calculate range
      Weapon firingWeapon = selectFiringWeapon(newTgt, range);         // select a weapon

      if (wpnCtrl.inSector(newTgt.getCurrentPos(), wpnPos, firingWeapon)){
         if (wpnCtrl.engageInSector(newTgt, (Vehicle)getParent())){
            if (wpnCtrl.inRangeAndTrigger(newTgt, firingWeapon)){
               if(!targetsOnMasterTargetList.contains(newTgt)){   // if target is not already on
                  masterTargetList.add(newTgt);                   // the target list add it
                  targetsOnMasterTargetList.addElement(newTgt);
               } // end if
               Target targetToShoot = (Target)masterTargetList.first();
               masterTargetList.remove(targetToShoot);
               targetsOnMasterTargetList.removeElement(targetToShoot);
               firingWeapon = selectFiringWeapon(targetToShoot, range);
               firingWeapon.shoot(targetToShoot, detectingSensor);
            } // end if
            else {
               checkForTrigger(detectingSensor, newTgt, firingWeapon);
            } // end else
         } // end if
      } // end if
      else {
         if (wpnCtrl.engageOutOfSector(newTgt, (Vehicle)getParent())){
            if (wpnCtrl.inRangeAndTrigger(newTgt, firingWeapon)){
               if(!targetsOnMasterTargetList.contains(newTgt)){   // if target is not already on
                  masterTargetList.add(newTgt);                   // the target list add it
                  targetsOnMasterTargetList.addElement(newTgt);
               } // end if
               Target targetToShoot = (Target)masterTargetList.first();
               masterTargetList.remove(targetToShoot);
               targetsOnMasterTargetList.removeElement(targetToShoot);
               firingWeapon = selectFiringWeapon(targetToShoot, range);
               firingWeapon.shoot(targetToShoot, detectingSensor);
            } // end if
            else {
               checkForTrigger(detectingSensor, newTgt, firingWeapon);
            } // end else
         } // end if
         checkEnterSector(detectingSensor, newTgt, firingWeapon);
      } // end else
   } // end engageTarget()

   public void engageTarget(Sensor detectingSensor){
      if (masterTargetList.isEmpty()){                                 // if there are no
         return;                                                       // targets on the list
      } // end if
      Target nextTgt = (Target)masterTargetList.first();
      masterTargetList.remove(nextTgt);
      Coor3D wpnPos = (Coor3D)(getParent().getProperty("CurrentPos"));



102

double range = wpnPos.distTo(nextTgt.getCurrentPos());
      Weapon firingWeapon = selectFiringWeapon(nextTgt, range);

      if (wpnCtrl.inSector(nextTgt.getCurrentPos(), wpnPos, firingWeapon)){
         if (wpnCtrl.engageInSector(nextTgt, (Vehicle)getParent())){
            if (wpnCtrl.inRangeAndTrigger(nextTgt, firingWeapon)){
               targetsOnMasterTargetList.removeElement(nextTgt);
               firingWeapon.shoot(nextTgt, detectingSensor);
            } // end if
            else {
               masterTargetList.add(nextTgt);
               checkForTrigger(detectingSensor, nextTgt, firingWeapon);
            } // end else
         } // end if
      } // end if
      else {
         if (wpnCtrl.engageOutOfSector(nextTgt, (Vehicle)getParent())){
            if (wpnCtrl.inRangeAndTrigger(nextTgt, firingWeapon)){
               targetsOnMasterTargetList.removeElement(nextTgt);
               firingWeapon.shoot(nextTgt, detectingSensor);
            } // end if
            else {
               masterTargetList.add(nextTgt);
               checkForTrigger(detectingSensor, nextTgt, firingWeapon);
            } // end else
         } // end if
         checkEnterSector(detectingSensor, nextTgt, firingWeapon);
      } // end else
   } // end engageTarget()

   public Weapon selectFiringWeapon(Target target, double range){
      String targetClassification;
      String targetType;
      double maxPk = 0;
      int detectionStatus = target.getDetectionStatus();
      Vector weapons = ((Vehicle)getParent()).getWeapons();
      Weapon weaponOfChoice = (Weapon)weapons.firstElement();

      if (detectionStatus == 4){
         targetType = target.getTargetType();
         for (Enumeration enum = weapons.elements(); enum.hasMoreElements();){
            Weapon tempWeapon = (Weapon)enum.nextElement();
            String weaponName = tempWeapon.getWeaponName();
            double pk = KillTable.getPk(weaponName, targetType, "frontal", range);
            maxPk = Math.max(pk, maxPk);
            if (pk == maxPk) {
               weaponOfChoice = tempWeapon;
            } // end if
         } // end for
         return weaponOfChoice;
      } // end else if

      if (detectionStatus == 3){
         targetClassification = target.getClassification();
      } // end if
      else {
         targetClassification = "TANK";
      } // end else
      return weaponOfChoice;
   } // end selectFiringWeapon()

//=============================================================================================
// Utility Methods
//=============================================================================================

   public String toString() {return getName();}

   public double retrievePk(double[][] killMatrix, double targetRange){
      int xx = 0;
      double killRange = 0;



103

   while(killMatrix[xx][1] != 0){
         killRange = killMatrix[xx][0];
         if (killRange >= targetRange){
            return killMatrix[xx][1];
         } // end if
         xx++;
      }// end while
      return killMatrix[xx - 1][1];
   } // end retrievePk;

   public void checkEnterSector(Sensor detectingSensor, Target tgt, Weapon firingWeapon){
      Coor3D firingVehPos = (Coor3D)getParent().getProperty("CurrentPos");
      Coor3D targetVehPos = tgt.getCurrentPos();
      Coor3D firingVehVel = (Coor3D)getParent().getProperty("Velocity");
      Coor3D targetVehVel = tgt.getTargetVelocity();
      double proxyTime = 0.0;
      double timeStep = .0083;
      double range = firingVehPos.distTo(targetVehPos);
      Coor3D tgtVehDeltaPos, snsVehDeltaPos, relativePos;
      while (range < detectingSensor.getSensorMaxRange()){
         if (firingVehVel.equals(new Coor3D(0, 0, 0)) &&
             targetVehVel.equals(new Coor3D(0, 0, 0))){
                return;
         } // end if
         if (wpnCtrl.inSector(targetVehPos, firingVehPos, firingWeapon)){
            generateEngageEvent("NewTarget", proxyTime, tgt, detectingSensor, firingWeapon);
            return;
         } // end if

         proxyTime += timeStep;                                       // increment time

         tgtVehDeltaPos = (Coor3D)targetVehVel.scalarMul(timeStep);   // determine how far veh
         snsVehDeltaPos = (Coor3D)firingVehVel.scalarMul(timeStep);   // can move in 1 timestep

         targetVehPos = (Coor3D)targetVehPos.add(tgtVehDeltaPos);     // update positions by
         firingVehPos = (Coor3D)firingVehPos.add(snsVehDeltaPos);     // their respective delta

         relativePos = (Coor3D)targetVehPos.sub(firingVehPos);        // determine new range
         range = relativePos.distTo(new Coor3D(0.0, 0.0, 0.0));
      } // end while
   } // end checkEnterSector()

   public void checkForTrigger(Sensor detectingSensor, Target tgt, Weapon firingWeapon){
      double criticalRange = Math.min(firingWeapon.getWeaponMaxRange(),
                             wpnCtrl.getTriggerLine());

      Coor3D firingVehPos = (Coor3D)getParent().getProperty("CurrentPos");
      Coor3D targetVehPos = tgt.getCurrentPos();
      Coor3D firingVehVel = (Coor3D)getParent().getProperty("Velocity");
      Coor3D targetVehVel = tgt.getTargetVelocity();

      double proxyTime = 0.0;
      double timeStep = .0083;
      double range = firingVehPos.distTo(targetVehPos);
      Coor3D tgtVehDeltaPos, snsVehDeltaPos, relativePos;

      while (range < detectingSensor.getSensorMaxRange()){
         if (firingVehVel.equals(new Coor3D(0, 0, 0)) &&          // if both vehicles are not
             targetVehVel.equals(new Coor3D(0, 0, 0))){           // moving no further events
                return;                                           // will occur
         } // end if
         if (range <= criticalRange){
            generateEngageEvent("NewTarget", proxyTime, tgt, detectingSensor, firingWeapon);
            return;
         } // end if

         proxyTime += timeStep;                                       // increment time



104

         tgtVehDeltaPos = (Coor3D)targetVehVel.scalarMul(timeStep);   // determine how far veh
         snsVehDeltaPos = (Coor3D)firingVehVel.scalarMul(timeStep);   // can move in 1 timestep

         targetVehPos = (Coor3D)targetVehPos.add(tgtVehDeltaPos);     // update positions by
         firingVehPos = (Coor3D)firingVehPos.add(snsVehDeltaPos);     // their respective delta

         relativePos = (Coor3D)targetVehPos.sub(firingVehPos);        // determine new range
         range = relativePos.distTo(new Coor3D(0.0, 0.0, 0.0));
      } // end while
   } // end checkForTrigger()
} // end class FireControl



105

APPENDIX B: ACRONYMS

• AAR – After Action Review
• ACDM – Accelerated Decision Making Process
• BBS – Brigade/ Battalion Battle Simulation
• BOS – Battlefield Operating System
• CALL – Center for Army Lessons Learned
• CBS – Corps Battle Simulation
• CMTC – Combat Maneuver Training Center
• COA – Course of Action
• CONUS – Continental United States
• CPX – Command Post Exercise
• CTC – Combat Training Center
• DTED – Digital Terrain Elevation Data
• DEC – Digital Equipment Corporation
• DES – Discrete Event Simulation
• GUI – Graphic users Interface
• JRTC – Joint Readiness Training Center
• Km – Kilometers
• MRB – Motorized Rifle Battalion
• MRC – Motorized Rifle Company
• MRR – Motorized Rifle Regiment
• NET – New Equipment Training
• NIMA – National Imagery and Mapping Agency
• NTC – National Training Center
• OC – Observer Controller
• OPFOR – Opposing Forces
• PC – Personal Computer



106



107

LIST OF REFERENCES

[1] U.S. Department of Defense, Department of the Army, FM 100-5 Operations,
Government Printing Office, Washington, D. C. 1993.

[2] U.S. Department of Defense, Department of the Army, FM 101-5 Staff Organization
and Operations, Government Printing Office, Washington, D. C. 1997.

[3] U.S. Army Command and General Staff College, ST 100-9 The Command Estimate
Process, Government Printing Office, Washington, D. C. 1992.

[4] U.S. Army Command and General Staff College, ST 101-5 Command and Staff
Decision Processes Government Printing Office, Washington, D. C. 1995.

[5] Long, Clyde L., Synchronization of Combat Power at the Task Force Level: Defining
a Planning Methodology, Master’s Thesis, U. S. Army Command and General Staff
College, Fort Leavenworth, Kansas, 1989.

[6] National Training Center Brigade Combat Training Team, Accelerated Tactical
Decision Making Process, Classroom training presented by the Brigade Combat
Trainers as part of the NTC’s pre-rotation training of visiting units, 1997.

[7] Titan Inc., Janus 3.X/Unix Model User’s Manual, 1993.

[8] U.S. Army National Simulation Center,  (Janus) “Information Paper.”
[http://www-leav.army.mil/nsc/famsim/janus/infopaper.htm], 3 Jan. 97

[9] U.S. Army National Simulation Center, “Available Janus Terrain.”
[http://www-leav.army.mil/nsc/famsim/janus/terrain.htm], 11 Feb. 99

[10] Defense Modeling and Simulation Office, “BBS – Brigade/Battalion Battle
Simulation.”
[http://www.msrr.dmso.mil/msdocs/sof/BBS.htm], undated

[11] U.S. Army National Simulation Center, “Brigade / Battalion Battle Simulation
Information Paper.”
[http://www-leav.army.mil/nsc/famsim/bbs/infopaper.htm], 11 Feb. 1998

[12] U.S. Army National Simulation Center, “BBS Terrain Information Paper.”
[http://www-leav.army.mil/nsc/famsim/bbs/terrain.htm], undated

[13] Defense Modeling and Simulation Office, “CBS – Corps Battle Simulation.”
[http://www.msrr.dmso.mil/msdocs/sof/CBS.htm], undated

[14] U.S. Army National Simulation Center, (CBS) “Information Paper.”
[http://www-leav.army.mil/nsc/famsim/cbs/infopaper.htm], 18 Sep. 98



108

[15] U.S. Army National Simulation Center, “Corps Battle Simulation Playboxes.”
[http://www-leav.army.mil/nsc/famsim/cbs/play.htm], undated

[16] Telephone conversation between MAJ Raymond Stienbart, Janus Team Chief  at the
National Simulation Center and the author, 12 Apr 1999.

[17] Telephone conversation between Mr. David Sargent, CBS Operations Research
Analyst at the National Simulation Center and the author, 12 Apr 1999.

[18] U.S. Army Center for Lessons Learned, “Military Decision Making: Abbreviated
Planning”
[http://call.army.mil/call/newsltrs/95-12upd/table.htm], 1995

[19] U.S. Army Center for Lessons Learned, “National Training Center Trends 1st and 2nd

Qtrs., FY 98”
[http://call.army.mil/call/ctc_bull/98-14/intro.htm], 1998

[20] U.S. Army Center for Lessons Learned, “National Training Center Trends 3rdt and
4th Qtrs., FY 97”
[http://call.army.mil/call/ctc_bull/98-4ntc/intro.htm], 1998

[21] U.S. Army Center for Lessons Learned, “National Training Center Trends
Compendium 3QFY96 through 2QFY97”
[http://call.army.mil/call/ctc_bull/97-17/intro.htm], 1997

[22] U.S. Army Center for Lessons Learned, “National Training Center Priority Trends
4QFY94 through 2QFY96”
[http://call.army.mil/call/ctc_bull/ntc96pri/ntc96toc.htm], 1996

[23] U.S. Army Center for Lessons Learned, “JRTC Trends 4QFY97 & 1QFY98”
[http://call.army.mil/call/ctc_bull/98-20/jrtctoc2.htm], 1998

[24] U.S. Army Center for Lessons Learned, “JRTC Trends Compendium 4QFY96
through 3QFY97”
[http://call.army.mil/call/ctc_bull/98-7/table.htm], 1997

[25] U.S. Army Center for Lessons Learned, “Joint Readiness Training Center Priority
Trends 4QFY94 through 3QFY96”
[http://call.army.mil/call/ctc_bull/jrtc96pt/jr96pt.htm], 1996

[26] Szyperski, Clemens, Component Software Beyond Object-Oriented Programming,
Addison Wesley Longman Limited, 1997

[27] Arntzen, A., Software Components for Air Defense Planning, Master’s Thesis, Naval
Postgraduate School, Monterey, California, September 1998.



109

[28] Schrepf, N, Visual Planning Aid for Movement of Ground Forces in Operations
Other Than War, Master’s Thesis, Naval Postgraduate School, Monterey, California,
March 1999.

[29] Buss, A. H., Simple Movement and Detection, Class Notes, June 1998.

[30] Stork, K,  A Simulation Study of Countermeasure Effectiveness Against Anti-Ship
Missles, Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 1996.



110



111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center                                                          2
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library                                                                                      2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Capt. Steve Chapman, USN                                                                            1
N6M
2000 Navy Pentagon
Room 4C445
Washington, DC 20350-2000

4. George Phillips                                                                                               1
CNO, N6M1
2000 Navy Pentagon
Room 4C445
Washingon, DC 20350-2000

5. Mike Macedonia                                                                                             1
Chief Scientist and Technical Director
US Army STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

6. National Simulation Center (NSC)                                                                 1
ATTN:ATZL-NSC (Jerry Ham)
410 Kearney Avenue --- Building 45
Fort Leavenworth, KS 66027-1306

7. Michael Bailey                                                                                                1
Principal Analyst, Modeling and Simulation
Marine Corps Combat Development Command (Code 56)
3300 Russell Road
Quantico, VA 22134

8. Dr. Michael Zyda, CodeCS/Zk                                                                       1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000



112

9. Dr. Arnold Buss, Code OR/Sb                                                                       1
Operations Research Department
Naval Postgraduate School
Monterey, CA 93940-5000

10. Senior Lecturer Bard Mansager, Code MA/Ma                                             1
Mathematics Department
Naval Postgraduate School
Monterey, CA 93940-5000

11. William E. Bohman                                                                                        1
3155 Lookout Circle

     Cincinnati, OH 45208



89


